【題目】已知正三角形ABC邊長為2,將它沿高AD翻折,使點B與點C間的距離為 ,此時四面體ABCD的外接球的表面積為

【答案】7π
【解析】解:根據(jù)題意可知三棱錐B﹣ACD的三條側(cè)棱BD⊥AD、DC⊥DA,它的外接球就是它擴展為三棱柱的外接球,求出三棱柱的底面中心連線的中點到頂點的距離,就是球的半徑,
三棱柱ABC﹣A1B1C1的中,底面邊長為1,1, ,
由題意可得:三棱柱上下底面中點連線的中點,到三棱柱頂點的距離相等,說明中心就是外接球的球心,
∴三棱柱ABC﹣A1B1C1的外接球的球心為O,外接球的半徑為r,
棱柱的高為 ,球心到底面的距離為 ,
三棱柱中,底面△BDC,BD=CD=1,BC= ,∴∠BDC=120°,∴△BDC的外接圓的半徑為: =1
∴球的半徑為r= =
外接球的表面積為:4πr2=7π.
故答案為:7π.
三棱錐B﹣ACD的三條側(cè)棱BD⊥AD、DC⊥DA,它的外接球就是它擴展為三棱柱的外接球,求出正三棱柱的底面中心連線的中點到頂點的距離,就是球的半徑,然后求球的表面積.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】給定橢圓,稱圓為橢圓的“伴隨圓”.已知點是橢圓上的點

(1)若過點的直線與橢圓有且只有一個公共點,求被橢圓的伴隨圓所截得的弦長:

(2)是橢圓上的兩點,設是直線的斜率,且滿足,試問:直線是否過定點,如果過定點,求出定點坐標,如果不過定點,試說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若f(-1)=f(1),求a,并直接寫出函數(shù)的單調(diào)增區(qū)間;

(2)當a時,是否存在實數(shù)x,使得=一?若存在,試確定這樣的實數(shù)x的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知全集U=R,A={x|x2﹣2x﹣3≤0},B={x|2≤x<5},C={x|x>a}.

(1)求A∩(UB);

(2)若A∪C=C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班準備從甲、乙、丙等6人中選出4人參加某項活動,要求甲、乙、丙三人中至少有兩人參加,那么不同的方法有 ( )

A. 18種 B. 12種 C. 432種 D. 288種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】高鐵、網(wǎng)購、移動支付和共享單車被譽為中國的“新四大發(fā)明”,彰顯出中國式創(chuàng)新的強勁活力.某移動支付公司從我市移動支付用戶中隨機抽取100名進行調(diào)查,得到如下數(shù)據(jù):

每周移動支付次數(shù)

1次

2次

3次

4次

5次

6次及以上

10

8

7

3

2

15

5

4

6

4

6

30

合計

15

12

13

7

8

45

(1)把每周使用移動支付6次及6次以上的用戶稱為“移動支付達人”,按分層抽樣的方法,在我市所有“移動支付達人”中,隨機抽取6名用戶

求抽取的6名用戶中男女用戶各多少人;

從這6名用戶中抽取2人,求既有男“移動支付達人”又有女“移動支付達人”的概率.

(2)把每周使用移動支付超過3次的用戶稱為“移動支付活躍用戶”,填寫下表,問能否在犯錯誤概率不超過0.01的前提下,認為“移動支付活躍用戶”與性別有關?

P(χ2k)

0.100

0.050

0.010

k

2.706

3.841

.635

非移動支付活躍用戶

移動支付活躍用戶

合計

合計

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知直線上兩點的極坐標分別為,圓的參數(shù)方程為為參數(shù)).

1)設為線段的中點,求直線的平面直角坐標方程;

2)判斷直線與圓的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以坐標原點O為極點,O軸的正半軸為極軸建立極坐標系,已知曲線C的極坐標方程為ρ=2(sinθ+cosθ+ ).
(1)寫出曲線C的參數(shù)方程;
(2)在曲線C上任取一點P,過點P作x軸,y軸的垂線,垂足分別為A,B,求矩形OAPB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定理:“實數(shù)m,n為常數(shù),若函數(shù)滿足,則函數(shù)的圖象關于點成中心對稱”.

(1)已知函數(shù)的圖象關于點成中心對稱,求實數(shù)b的值;

(2)已知函數(shù)滿足,,都有成立,且當, ,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習冊答案