已知數(shù)列{an}是遞減的等差數(shù)列,滿足a3+a7=-6,a4•a6=8
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列的前n項(xiàng)和.
考點(diǎn):數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件推導(dǎo)出a4>a6,且a4,a6是方程x2+6x+8=0的兩個(gè)根,由此求出a4=-2,a6=-4,再由等差數(shù)列的通項(xiàng)公式求出首項(xiàng)和公差,由此能求出an=2-n.
(2)由Sn=
n
2
(a1+an)
,能求出數(shù)列的前n項(xiàng)和.
解答: 解:(1)∵數(shù)列{an}是遞減的等差數(shù)列,
滿足a3+a7=a4+a6=-6,a4•a6=8,
∴a4>a6,且a4,a6是方程x2+6x+8=0的兩個(gè)根,
解方程x2+6x+8=0,得a4=-2,a6=-4,
a1+3d=-2
a1+5d=-4
,解得a1=1,d=-1,
∴an=2-n.
(2)設(shè)數(shù)列的前n項(xiàng)和為Sn
Sn=
n
2
(a1+an)
=
n
2
(1+2-n)
=
n(3-n)
2
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cosα=
4
5
,α∈(
2
,2π),則cos(α+
π
4
)=( 。
A、
2
10
B、
7
2
10
C、-
7
2
10
D、-
2
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足2sinAcosB=sin(B+C).
(1)求角B的大。
(2)設(shè)
m
=(sinA,1-2sin2A),
n
=(4k,1)(k∈R),且
m
n
的最大值是5,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,三棱錐V-ABC中,VA=VB=AC=BC=2VC,∠ACB=120°.
(1)求證:AB⊥VC;
(2)求二面角V-AB-C的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}和和為Sn,且a4=9,S5=35
(1)求數(shù)列{an}的通項(xiàng)公式
(2)求數(shù)列數(shù)列{|an|}的前20項(xiàng)和T20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-x-2<0},B={x|m<x<2m+1}
(1)求∁RA;
(2)若B∩(∁RA)=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某化工廠生產(chǎn)的某種化工產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸之間時(shí),其生產(chǎn)的總成本y(萬(wàn)元)與年產(chǎn)量x(噸)之間的函數(shù)關(guān)系式近似地表示為y=
x2
10
-30x+4000.
問(wèn):每噸平均出廠價(jià)為16萬(wàn)元,年產(chǎn)量為多少噸時(shí),可獲得最大利潤(rùn)?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題p:“函數(shù)f(x)=2x+
a
2x
在區(qū)間[4,+∞)上遞增”;命題Q:“g(x)=log2x-
a
log2x
在區(qū)間[4,+∞)上遞增”.若命題p與命題Q有且僅有一個(gè)真,求實(shí)數(shù)a的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α、β滿足0<α<
π
2
<β<π,cos(β-
π
4
)=
1
3
,sin(α+β)=
4
5

(1)求cos(α+
π
4
)的值;
(2)求sin2β的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案