【題目】如圖,圓F和拋物線,過F的直線與拋物線和圓依次交于AB、CD四點(diǎn),求的值是( )

A.1B.2C.3D.無法確定

【答案】A

【解析】

可分兩類討論,若直線的斜率不存在,則直線方程為x=1,代入拋物線方程和圓的方程,可直接得到ABCD四個(gè)點(diǎn)的坐標(biāo),從而|AB||CD|=1.若直線的斜率存在,設(shè)為直線方程為y=kx-1),不妨設(shè)Ax1y1),Dx2,y2),過A、D分別作拋物線準(zhǔn)線的垂線,由拋物線的定義,|AF|=x1+1|DF|=x2+1,把直線方程與拋物線方程聯(lián)立,消去y可得k2x2-2k2+4x+k2=0,利用韋達(dá)定理及|AB|=|AF|-|BF|=x1,|CD|=|DF|-|CF|=x2,可求|AB||CD|的值.

解:若直線的斜率不存在,則直線方程為x=1,代入拋物線方程和圓的方程,可直接得到ABCD四個(gè)點(diǎn)的坐標(biāo)為(1,2)(1,1)(1,-1)(1,-2),所以|AB|=1,|CD|=1,從而|AB||CD|=1.若直線的斜率存在,設(shè)為k,因?yàn)橹本過拋物線的焦點(diǎn)(1,0),則直線方程為y=kx-1),不妨設(shè)Ax1,y1),Dx2,y2),過A、D分別作拋物線準(zhǔn)線的垂線,由拋物線的定義,|AF|=x1+1,|DF|=x2+1,把直線方程與拋物線方程聯(lián)立,消去y可得k2x2-2k2+4x+k2=0,由韋達(dá)定理有 x1x2=1而拋物線的焦點(diǎn)F同時(shí)是已知圓的圓心,所以|BF|=|CF|=R=1
從而有|AB|=|AF|-|BF|=x1,|CD|=|DF|-|CF|=x2
所以|AB||CD|=x1x2=1
故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的極坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù))

(Ⅰ)求直線的直角坐標(biāo)方程和曲線的普通方程;

)若過且與直線垂直的直線與曲線相交于兩點(diǎn),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(Ⅰ)若,解不等式;

(Ⅱ)若不等式至少有一個(gè)負(fù)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是底面邊長為1的正三棱錐,分別為棱長上的點(diǎn),截面底面,且棱臺(tái)與棱錐的棱長和相等.(棱長和是指多面體中所有棱的長度之和)

(1)證明:為正四面體;

(2)若,求二面角的大。唬ńY(jié)果用反三角函數(shù)值表示)

(3)設(shè)棱臺(tái)的體積為,是否存在體積為且各棱長均相等的直平行六面體,使得它與棱臺(tái)有相同的棱長和?若存在,請(qǐng)具體構(gòu)造出這樣的一個(gè)直平行六面體,并給出證明;若不存在,請(qǐng)說明理由.

(注:用平行于底的截面截棱錐,該截面與底面之間的部分稱為棱臺(tái),本題中棱臺(tái)的體積等于棱錐的體積減去棱錐的體積.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿市場銷售價(jià)與上市時(shí)間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系用圖(2)的拋物線段表示.

(1)寫出圖(1)表示的市場售價(jià)與時(shí)間的函數(shù)關(guān)系式寫出圖(2)表示的種植成本與時(shí)間的函數(shù)關(guān)系式

(2)認(rèn)定市場售價(jià)減去種植成本為純收益,問何時(shí)上市的西紅柿收益最大?(注:市場售價(jià)和種植成本的單位:元/kg,時(shí)間單位:天.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知下列四個(gè)命題:

①等差數(shù)列一定是單調(diào)數(shù)列;

②等差數(shù)列的前項(xiàng)和構(gòu)成的數(shù)列一定不是單調(diào)數(shù)列;

③已知等比數(shù)列的公比為,若,則數(shù)列是單調(diào)遞增數(shù)列.

④記等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的最大值一定在處達(dá)到.

其中正確的命題有_____.(填寫所有正確的命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)若不等式對(duì)任意的正實(shí)數(shù)都成立,求實(shí)數(shù)的最大整數(shù);

(3)當(dāng)時(shí),若存在實(shí)數(shù),使得,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】計(jì)劃在某水庫建一座至多安裝3臺(tái)發(fā)電機(jī)的水電站,過去50年的水文資料顯示,水庫年入流量X(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,如將年人流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的年入流量相互獨(dú)立.

(1)求未來4年中,至多有1年的年入流量超過120的概率;(,

(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行最多,但每年發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)受年入流量X限制,并有如下關(guān)系:

年流入量

發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)

1

2

3

若某臺(tái)發(fā)電機(jī)運(yùn)行,則該臺(tái)年利潤為4000萬元,若某臺(tái)發(fā)電機(jī)未運(yùn)行,則該臺(tái)年虧損600萬元,欲使水電站年總利潤的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺(tái)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)容量為66的樣本,數(shù)據(jù)的分組及各組的頻數(shù)如下:

[10.5,14.5)  2  [14.5,18.5)  4 [18.5,22.5)  9 [22.5,26.5)  18

[26.5,30.5)  11  [30.5,34.5)  12 [34.5,38.5)  8  [38.5,42.5)  2

根據(jù)樣本的頻率分布估計(jì),數(shù)據(jù)落在[30.5,42.5)內(nèi)的概率約是(  )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案