在圖1等邊三角形ABC中,AB=2,E是線段AB上的點(diǎn)(除點(diǎn)A外),過點(diǎn)E作EF⊥AC于點(diǎn)F,將△AEF 沿EF折起到△PEF(點(diǎn)A與點(diǎn)P重合,如圖2),使得∠PFC=
π
3

(1)求證:EF⊥PC;
(2)試問,當(dāng)點(diǎn)E在線段AB上移動(dòng)時(shí),二面角P-EB-C的大小是否為定值?若是,求出這個(gè)二面角的平面角的正切值,若不是,請說明理由.
考點(diǎn):與二面角有關(guān)的立體幾何綜合題
專題:綜合題,空間位置關(guān)系與距離,空間角
分析:(1)由線面垂直的判定定理定理,易得EF⊥平面PFC,再由線面垂直的定義,即可得到EF丄PC;
(2)作PH⊥FC,則PH⊥平面BCFE,作HG⊥BE,連接PG,則BE⊥PG,可得∠PGH是個(gè)二面角的平面角,即可得出結(jié)論.
解答: (1)證明:∵EF⊥PF,EF⊥FC,又由PF∩FC=F
∴EF⊥平面PFC
又∵PC?平面PFC
∴EF⊥PC;
(2)解:由(1)知,EF⊥平面PFC,∴平面BCFE⊥平面PFC
作PH⊥FC,則PH⊥平面BCFE,作HG⊥BE,連接PG,則BE⊥PG
∴∠PGH是個(gè)二面角的平面角,
設(shè)AF=x,則0<x≤1,
∵∠PFC=60°,
∴FH=
x
2
,PH=
3
2
x,
∵GH=
3
3
4
x,
∴tan∠PGH=
PH
GH
=
2
3
,
∴二面角P-EB-C的大小是定值.
點(diǎn)評:本題主要考查直線與直線,直線與平面、平面與平面的位置關(guān)系等基礎(chǔ)知識,考查空間想像能力、推理論證能力、運(yùn)算求解能力、考查化歸與轉(zhuǎn)化思想,函數(shù)與方程思想等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

為了了解某同學(xué)的數(shù)學(xué)學(xué)習(xí)情況,對他的6次數(shù)學(xué)測試成績(滿分100分)進(jìn)行統(tǒng)計(jì),作出的莖葉圖如圖所示,則下列關(guān)于該同學(xué)數(shù)學(xué)成績的說法正確的是( 。
A、中位數(shù)為83
B、眾數(shù)為85
C、平均數(shù)為85
D、方差為19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,an<0,前n項(xiàng)和Sn=-
1
4
(an-1)2

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1
n(3-an)
(n∈N+),Tn=b1+b2+…+bn,若對任意n∈N+,總存在m∈[-1,1]使Tn<m2-2m+t+
1
2
成立,求出t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論中是錯(cuò)誤命題的是( 。
A、命題p:“?x∈R,x2-2≥0”的否定形式為¬p:“?x∈R,x2-2<0”
B、若¬p是q的必要條件,則p是¬q的充分條件
C、“M>N”是“(
2
3
M>(
2
3
N”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-2x+1.
(1)當(dāng)x∈[1,2]時(shí),f(x)>0恒成立,求實(shí)數(shù)a的取值范圍;
(2)若函數(shù)g(x)=|f(x)|(a≥0)在[1,2]上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校要建一個(gè)面積為450平方米的矩形球場,要求球場的一面利用舊墻,其他各面用鋼筋網(wǎng)圍成,且在矩形一邊的鋼筋網(wǎng)的正中間要留一個(gè)3米的進(jìn)出口(如圖).設(shè)矩形的長為x米,鋼筋網(wǎng)的總長度為y米.
(1)列出y與x的函數(shù)關(guān)系式,并寫出其定義域;
(2)問矩形的長與寬各為多少米時(shí),所用的鋼筋網(wǎng)的總長度最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈R,符號[x]表示不超過x的最大整數(shù),若函數(shù)f(x)=
[x]
x
-a(x≠0)有且僅有3個(gè)零點(diǎn),則a的取值范圍是( 。
A、[
3
4
,
4
5
]∪[
4
3
3
2
]
B、(
3
4
,
4
5
]∪[
4
3
3
2
C、(
1
2
,
2
3
]∪[
5
4
,
3
2
D、[
1
2
,
2
3
]∪[
5
4
3
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
9x-a
3x
的圖象關(guān)于原點(diǎn)對稱,g(x)=lg(10x+1)+bx是偶函數(shù),則a+b=( 。
A、1
B、-1
C、-
1
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x),g(x)的定義域分別為F,G,且F⊆G,若對任意x∈F,都有g(shù)(x)=f(x),則稱g(x)為f(x)在G上的一個(gè)“延拓函數(shù)”,已知函數(shù)f(x)=2x(x≤0),若g(x)為f(x)在R上延拓函數(shù),且g(x)是偶函數(shù),則函數(shù)g(x)的解析式是
 

查看答案和解析>>

同步練習(xí)冊答案