化簡(jiǎn):
1-tanα
1+tanα
考點(diǎn):兩角和與差的正切函數(shù)
專題:三角函數(shù)的求值
分析:直接利用兩角差的正切函數(shù)求解即可.
解答: 解:
1-tanα
1+tanα
=
tan45°-tanα
1+tanαtan45°
=tan(45°-α).
點(diǎn)評(píng):本題考查兩角差的正切函數(shù)的應(yīng)用,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式|x+1|+|x-2|>a的解集是全體實(shí)數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

上海出租車(chē)的價(jià)格規(guī)定:起步費(fèi)14元,可行3公里,3公里以后按每公里2.4元計(jì)算,可再行7公里;超過(guò)10公里按每公里3.6元計(jì)算,假設(shè)不考慮堵車(chē)和紅綠燈等所引起的費(fèi)用,也不考慮實(shí)際收取費(fèi)用去掉不足一元的零頭等實(shí)際情況,即每一次乘車(chē)的車(chē)費(fèi)由行車(chē)?yán)锍涛ㄒ淮_定.
(1)小明乘出租車(chē)從學(xué)校到家,共8公里,請(qǐng)問(wèn)他應(yīng)付出租車(chē)費(fèi)多少元?(本小題只需要回答最后結(jié)果)
(2)求車(chē)費(fèi)y(元)與行車(chē)?yán)锍蘹(公里)之間的函數(shù)關(guān)系式y(tǒng)=f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線y=
1
x
,求曲線在點(diǎn)P(1,1)處的切線方程,求滿足斜率為-
1
4
的曲線的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知θ為第二象限角,sinθ,cosθ是關(guān)于x的方程2x2+(
3
-1)
x+m=0(m∈R)的兩根,則sinθ-cosθ的等于( 。
A、
1+
3
2
B、
1-
3
2
C、
3
D、-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若原點(diǎn)O到直線ax+by+c=0的距離為1,則有( 。
A、c=1
B、c=
a2+b2
C、c2=a2+b2
D、c=a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將下一列參數(shù)方程化為普通方程:
x=
3k
1+k2
y=
6k2
1+k2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2(2-x)=log2(x+2).
(1)求函數(shù)f(x)的定義域;
(2)判斷f(x)的奇偶性并加以證明;
(3)若f(x)<log2(ax)在x∈[
1
2
,1]上恒成立,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(α+
π
4
)=
1
2
,α∈(0,π),則cosα=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案