【題目】已知數(shù)列an}的前n項(xiàng)和為Sn , a1=1,a2=2,且點(diǎn)(Sn , Sn+1)在直線y=tx+1上.
(1)求Sn及an;
(2)若數(shù)列{bn}滿足bn= (n≥2),b1=1,數(shù)列{bn}的前n項(xiàng)和為Tn , 求證:當(dāng)n≥2時(shí),Tn<2.
【答案】
(1)解:由題意,得Sn+1=tSn+1,令n=1有,S2=tS1+1,
∴a1+a2=ta1+1.代入a1=1,a2=2有t=2.
∴Sn+1=2Sn+1,則Sn=2Sn﹣1+1(n≥2).
兩式相減有,an+1=2an,即 ,且 符合.
∴{an}為公比為2的等比數(shù)列.
則 ,
(2)證明:bn= = < .
∴當(dāng)n≥2時(shí),
Tn=b1+b2+…+bn =
【解析】(1)把點(diǎn)(Sn , Sn+1)代入直線y=tx+1,結(jié)合a1=1,a2=2求得t,可得數(shù)列遞推式,進(jìn)一步可得{an}為公比為2的等比數(shù)列.再由等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式求得Sn及an;(2)把a(bǔ)n代入bn= ,放縮可得 (n≥2),代入Tn=b1+b2+…+bn , 由等比數(shù)列的前n項(xiàng)和證得當(dāng)n≥2時(shí),Tn<2.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={x|y= },B={x|x2﹣2x+1﹣m2≤0}.
(1)若m=3,求A∩B;
(2)若m>0,AB,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某展覽館用同種規(guī)格的木條制作如圖所示的展示框,其內(nèi)框與外框均為矩形,并用木條相互連結(jié),連結(jié)木條與所連框邊均垂直.水平方向的連結(jié)木條長(zhǎng)均為8cm,豎直方向的連結(jié)木條長(zhǎng)均為4cm,內(nèi)框矩形的面積為3200cm2 . (不計(jì)木料的粗細(xì)與接頭處損耗)
(1)如何設(shè)計(jì)外框的長(zhǎng)與寬,才能使外框矩形面積最。
(2)如何設(shè)計(jì)外框的長(zhǎng)與寬,才能使制作整個(gè)展示框所用木條最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)a1=a,Sn是數(shù)列{an}的前n項(xiàng)和,且滿足: =3n2an+,an≠0,n≥2,n∈N*.
(1)若數(shù)列{an}是等差數(shù)列,求a的值;
(2)確定a的取值集合M,使a∈M時(shí),數(shù)列{an}是遞增數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的三內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,△ABC的面積S= 且sinA= .
(1)求sinB;
(2)若邊c=5,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】運(yùn)行如圖所示的程序框圖,若輸出的結(jié)果為 ,則判斷框內(nèi)可以填( )
A.k>98?
B.k≥99?
C.k≥100?
D.k>101?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (其中α為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(1)若A,B為曲線C1 , C2的公共點(diǎn),求直線AB的斜率;
(2)若A,B分別為曲線C1 , C2上的動(dòng)點(diǎn),當(dāng)|AB|取最大值時(shí),求△AOB的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,真命題的是( )
A.已知f(x)=sin2x+ ,則f(x)的最小值是2
B.已知數(shù)列{an}的通項(xiàng)公式為an=n+ ,則{an}的最小項(xiàng)為2
C.已知實(shí)數(shù)x,y滿足x+y=2,則xy的最大值是1
D.已知實(shí)數(shù)x,y滿足xy=1,則x+y的最小值是2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分16分)已知數(shù)列(, )滿足, 其中, .
(1)當(dāng)時(shí),求關(guān)于的表達(dá)式,并求的取值范圍;
(2)設(shè)集合.
①若, ,求證: ;
②是否存在實(shí)數(shù), ,使, , 都屬于?若存在,請(qǐng)求出實(shí)數(shù), ;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com