已知命題“p:?x>0,lnx<x”,則¬p為(  )
A、?x∈R,lnx≥x
B、?x>0,lnx≥x
C、?x∈R,lnx<x
D、?x>0,lnx<x
考點:命題的否定
專題:簡易邏輯
分析:直接利用特稱命題的否定是全稱命題寫出結果即可.
解答: 解:因為特稱命題的否定是全稱命題,
所以命題“p:?x>0,lnx<x”,則¬p為:?x>0,lnx≥x.
故選:B.
點評:本題考查命題的否定,特稱命題與全稱命題的關系,基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

不等式
1-2x
x+1
>1的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sinx•ln(x2+1)的部分圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=3ax+1-2a在(-1,1)上存在x0使f(x0)=0,則實數(shù)a的取值范圍是( 。
A、a<
1
5
B、a>
1
5
C、a>
1
5
或a<-1
D、a<-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

記函數(shù)f(x)的導函數(shù)為f′(x),若曲線在點(x0,f(x0))處的切線方程為x+y+1=0,則( 。
A、f′(x0)>0
B、f′(x0)=0
C、f′(x0)<0
D、f′(x0)不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足①f(x)+f(2-x)=0,②f(x)-f(-2-x)=0,③在[-1,1]上表達式為,f(x)=
1-x2
x∈[-1,0]
1-x;x∈(0,1]
則函數(shù)f(x)與函數(shù)g(x)=
2x,x≤0
log
1
2
x
,x>0
的圖象在區(qū)間[-3,3]上的交點個數(shù)為( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3sinωx(ω>0)在區(qū)間[-
π
3
,
π
4
]上的最大值是3,則ω的最小值為( 。
A、
2
3
B、
3
2
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某初級中學共有學生2000名,各年級男、女生人數(shù)如表:
初一年級初二年級初三年級
女生373xy
男生377370z
已知在全校學生中隨機抽取1名,抽到初二年級女生的概率是0.19.
(1)求x的值;
(2)現(xiàn)用分層抽樣的方法在全校抽取48名學生,問應在初三年級抽取多少名?
(3)已知y≥245,z≥245,求初三年級中女生比男生多的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)集A={a2,2},B={1,2,3,2a-4},C={6a-a2-6},如果C⊆A,C⊆B,求a的取值的集合.

查看答案和解析>>

同步練習冊答案