已知映射f:A→B,其中集合A={-9,-3,-1,1,3,9},集合B中的元素都是A中的元素在映射f下的象,且對(duì)于任意x∈A,在B中和它對(duì)應(yīng)的元素是log3|x|,則集合B為( 。
A、{1,2,3}
B、{0,1,2}
C、{-2,-1,0,1,2}
D、{1,2}
考點(diǎn):映射
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:先找出對(duì)應(yīng)關(guān)系,根據(jù)原象判斷象的值,象的值即是集合B中元素.
解答: 解:對(duì)應(yīng)元素為log3|x|當(dāng)x=-9和9時(shí),log3|x|=2
當(dāng)x=-3和3時(shí),log3|x|=1
當(dāng)x=-1和1時(shí),log3|x|=0
所以B={0,1,2}.
故選:B.
點(diǎn)評(píng):本題考查映射的概念,象與原象的定義,集合A中所有元素的集合即為集合B中元素集合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平行六面體中,M是底面ABCD中心,N在側(cè)面BCC1B1的對(duì)角線BC1
3
4
分點(diǎn)且靠近C1,若
MN
AB
AD
AA1
,則α+β+γ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x-1,則f(2x+3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知AB=2,BC=3,∠ABC=60°AH⊥BC于H,M為AH的中點(diǎn),若
AM
AB
AC
,則λ+μ的值是( 。
A、
1
3
B、
2
3
C、
1
6
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上的非零向量
OP1
,
OP2
,
OP3
滿足
OP1
+
OP2
+
OP3
=
0
,|
OP1
|=|
OP2
|=1,且cos<
OP1
,
OP2
>=-
4
5
,則△P1P2P3的形狀為( 。
A、等腰三角形
B、直角三角形
C、等腰直角三角形
D、等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=3,a1+a2+a3=12,則a4+a5+a6=( 。
A、28B、27C、26D、21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1,x2分別是函數(shù)f(x)=log2x-(
1
2
x和g(x)=log
1
2
x-(
1
2
x的零點(diǎn),則(  )
A、x1x2<0
B、0<x1x2<1
C、x1x2=1
D、1<x1x2<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知直三棱柱ABC-A1B1C1,AB=AC,F(xiàn)為BB1上一點(diǎn),D為BC的中點(diǎn),且BF=2BD.
(1)當(dāng)
BF
FB1
為何值時(shí),對(duì)于AD上任意一點(diǎn)總有EF⊥FC1;
(2)若A1B1=3,C1F與平面AA1B1B所成角的正弦值為
4
10
15
,當(dāng)
BF
FB1
在(1)所給的值時(shí),求三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平行四邊形ABCD中,E、F分別是BC,DC的中點(diǎn),若
AB
=
a
AD
=
b
,試用
a
b
,表示
DE
BF

查看答案和解析>>

同步練習(xí)冊(cè)答案