A. | (-$\frac{2}{e}$,+∞) | B. | (-$\frac{2}{e}$,0) | C. | (-∞,-$\frac{2}{e}$) | D. | (-$\frac{2}{e}$,-$\frac{1}{e}$) |
分析 問(wèn)題轉(zhuǎn)化為m=2xlnx在(0,+∞)有2個(gè)不同的實(shí)數(shù)根,令g(x)=2xlnx,g′(x)=2(1+lnx),根據(jù)函數(shù)的單調(diào)性求出g(x)的范圍,從而求出m的范圍即可.
解答 解:f′(x)=$\frac{m}{x}$-2lnx=$\frac{m-2xlnx}{x}$,(x>0),
若函數(shù)f(x)具有“凹凸趨向性”時(shí),
則m=2xlnx在(0,+∞)有2個(gè)不同的實(shí)數(shù)根,
令g(x)=2xlnx,g′(x)=2(1+lnx),
令g′(x)>0,解得:x>$\frac{1}{e}$,令g′(x)<0,解得:0<x<$\frac{1}{e}$,
∴g(x)在(0,$\frac{1}{e}$)遞減,在($\frac{1}{e}$,+∞)遞增,
故g(x)的最小值是g($\frac{1}{e}$)=-$\frac{2}{e}$,x→0時(shí),g(x)→0,
故-$\frac{2}{e}$<m<0,
故選:B.
點(diǎn)評(píng) 不同考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | 10 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (1,0) | B. | (0,1) | C. | (1,1) | D. | (1,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 隨t的變化而變化 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若α∥β,l?α,n?β,則l∥n | B. | 若α⊥β,l?α,則l⊥β | ||
C. | 若l⊥α,l∥β,則α⊥β | D. | 若l⊥n,m⊥n,則l∥m |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com