(本小題滿分13分)在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列 的各項(xiàng)均為正數(shù),,公比為,且,.
(1)求與;
(2)設(shè)數(shù)列滿足,求的前項(xiàng)和.
(1) ,;(2).
解析試題分析:(1)由在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列 的各項(xiàng)均為正數(shù),,公比為,且,.列出兩個(gè)關(guān)于公差和公比的方程.求出共差和公比即可求出等差數(shù)列和等比數(shù)列的通項(xiàng).
(2)由(1)可得等差數(shù)列的通項(xiàng)公式所以可以求出前和,又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/86/e/1zsep4.png" style="vertical-align:middle;" />所以可得數(shù)列通項(xiàng)公式.再通過裂項(xiàng)求和可求得前項(xiàng)和.
試題解析:(1)設(shè)的公差為.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f8/d/1ms4e4.png" style="vertical-align:middle;" />所以 3分
解得 或(舍),. 5分
故 ,. 7分
(2)由(1)可知,, 8分
所以 10分
故 13分
考點(diǎn):1.待定系數(shù)法求通項(xiàng).2.裂項(xiàng)求和.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的相鄰兩項(xiàng),是關(guān)于方程的兩根,且.
(1)求證:數(shù)列是等比數(shù)列;
(2)求數(shù)列的前項(xiàng)和;
(3)設(shè)函數(shù),若對任意的都成立,求實(shí)數(shù) 的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的前n項(xiàng)和為,且,數(shù)列滿足.
(1)求數(shù)列的通項(xiàng)公式,
(2)求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,滿足且構(gòu)成等比數(shù)列.
(Ⅰ)證明:;
(Ⅱ)求數(shù)列的通項(xiàng)公式;
(Ⅲ)證明:對一切正整數(shù),有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,前和
(1)求證:數(shù)列是等差數(shù)列
(2)求數(shù)列的通項(xiàng)公式
(3)設(shè)數(shù)列的前項(xiàng)和為,是否存在實(shí)數(shù),使得對一切正整數(shù)都成立?若存在,求的最小值,若不存在,試說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前n項(xiàng)和為構(gòu)成數(shù)列,數(shù)列的前n項(xiàng)和構(gòu)成數(shù)列.
若,則
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知等差數(shù)列的前項(xiàng)和滿足,。
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com