1.“直線(xiàn)ax+y+1=0與(a+2)x-3y-2=0垂直”是“a=1”的(  )
A.既不充分也不必要條件B.充分不必要條件
C.充要條件D.必要不充分條件

分析 由兩條直線(xiàn)相互垂直,可得:-a×(-$\frac{a+2}{-3}$)=-1,解得a,即可判斷出結(jié)論.

解答 解:由兩條直線(xiàn)相互垂直,可得:-a×(-$\frac{a+2}{-3}$)=-1,解得a=-3或1.
∴“直線(xiàn)ax+y+1=0與(a+2)x-3y-2=0垂直”是“a=1”的必要不充分條件.
故選:D.

點(diǎn)評(píng) 本題考查了直線(xiàn)相互垂直的充要條件及其判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)a=log32,b=log2$\frac{1}{8}$,c=$\sqrt{2}$,則(  )
A.a>b>cB.c>b>aC.a>c>bD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知數(shù)列$\sqrt{3},3,\sqrt{15},…,\sqrt{3(2n-1)},…$,那么9是此數(shù)列的第(  )項(xiàng).
A.12B.13C.14D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.一只口袋內(nèi)裝有大小相同的5只球,其中3只白球,2只黑球,從中一次性隨機(jī)摸出2只球,則摸到同色球的概率為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.求下列不等式的解集.
(1)$\frac{2x}{x+1}<1$         
(2)x2+(2-a)x-2a≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在如圖所示的幾何體中,四邊形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分別為MB、PB、PC的中點(diǎn).
(1)求證:平面EFG∥平面PMA;
(2)求證:平面EFG⊥平面PDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知正三棱錐V-ABC的正視圖、俯視圖如圖所示,它的側(cè)棱VA=2,底面的邊AC=2$\sqrt{3}$,則由該三棱錐的表面積為6$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.給出下列命題
①y=$\frac{1}{x}$在定義域內(nèi)為減函數(shù);
②y=(x-1)2在(0,+∞)上是增函數(shù);
③y=-$\frac{1}{x}$在(-∞,0)上為增函數(shù);
④y=kx不是增函數(shù)就是減函數(shù).
其中錯(cuò)誤命題的個(gè)數(shù)有3個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知A={x|x2-2x-3<0},B={x|ax2-x+b≥0},若A∩B=∅,A∪B=R,則a+b等于(  )
A.1B.-1C.2D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案