解答題(本題共10分.請寫出文字說明, 證明過程或演算步驟):
已知是橢圓上一點(diǎn),,是橢圓的兩焦點(diǎn),且滿足
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)、是橢圓上任兩點(diǎn),且直線、的斜率分別為、,若存在常數(shù)使,求直線的斜率.
(I);(II)。
【解析】
試題分析:(I)根據(jù),可知a=2,所以再把點(diǎn)A的坐標(biāo)代入橢圓方程求出b的值,求出橢圓的方程.
(II)設(shè)直線AC的方程:,由,得:
點(diǎn)C,同理求出D的坐標(biāo),再利用斜率公式即可證明CD的斜率為定值.
(I)所求橢圓方程…………………3分;
(II)設(shè)直線AC的方程:,由,得:
點(diǎn)C…………………………..5分;
同理 ………………………..6分;
……………………8分;
要使為常數(shù), +(1-)=0,
得…………………………10分.
考點(diǎn):橢圓的定義、標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系.
點(diǎn)評:橢圓上的點(diǎn)到兩焦點(diǎn)的距離之和為定值,也就是常數(shù)2a,再根據(jù)其它條件建立關(guān)于b的方程,求出b即可得到橢圓的標(biāo)準(zhǔn)方程.
在證明CD的斜率為定值時,關(guān)鍵是求出點(diǎn)C,D的坐標(biāo),需要用直線方程與橢圓方程聯(lián)立求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010-2011年遼寧省瓦房店市高級中學(xué)高二下學(xué)期期末聯(lián)考理科數(shù)學(xué) 題型:解答題
三、解答題(本大題共6小題,共70分。解答應(yīng)寫出文字說明,證明過程或演算步驟)
17.(本題滿分10分)
已知向量, 的夾角為, 且, , 若, , 求(1)·;
(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省河西五市高三第二次聯(lián)考理科數(shù)學(xué)文卷 題型:解答題
三.解答題:本大題共6個小題,共70分,解答應(yīng)寫出文字說明、證明過程或演算步驟.
17. (本題滿分10分)
已知函數(shù),
(1)求函數(shù)的最小正周期;
(2)在中,已知為銳角,,,求邊的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年遼寧省瓦房店市高二下學(xué)期期末聯(lián)考理科數(shù)學(xué) 題型:解答題
三、解答題(本大題共6小題,共70分。解答應(yīng)寫出文字說明,證明過程或演算步驟)
17.(本題滿分10分)
已知向量, 的夾角為, 且, , 若, , 求(1)·;
(2).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com