3.已知p:-4<x-a<4,q:(x-2)(3-x)>0,若q是p的充分條件,則a的取值范圍為[-1,6].

分析 分別化簡命題p,q,利用充分條件的意義即可得出.

解答 解:p:-4<x-a<4,化為:a-4<x<4+a.
q:(x-2)(3-x)>0,解得2<x<3.
∵q是p的充分條件,∴$\left\{\begin{array}{l}{a-4≤2}\\{3≤4+a}\end{array}\right.$,解得-1≤a≤6.
故答案為:[-1,6].

點評 本題考查了不等式的解法、充分條件的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

13.已知f(x)是定義在R上的偶函數(shù),且在(-∞,0]上是增函數(shù),設$a=f({{{log}_4}7}),b=f({{{log}_{\frac{1}{2}}}3})$,c=f(0.20.6),則a,b,c的大小關系是(  )
A.c<b<aB.b<c<aC.b<a<cD.a<b<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知集合A={x||x-2|<a},集合$B=\left\{{x\left|{\frac{2x-1}{x+2}≤1}\right.}\right\}$,且A⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.雙曲線$\frac{x^2}{{{m^2}+12}}-\frac{y^2}{{4-{m^2}}}=1$的焦距是(  )
A.8B.4C.$2\sqrt{2}$D.與m有關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知F1,F(xiàn)2是雙曲線$\frac{x^2}{9}-\frac{y^2}{16}$=1的兩個焦點,p為雙曲線上一點且∠F1PF2=60°,則${S_{△P{F_1}{F_2}}}$=( 。
A.$16\sqrt{3}$B.$\frac{{16\sqrt{3}}}{3}$C.$9\sqrt{3}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若 M={1,2,4,5},N={2,3,4,6},則M∩N=( 。
A.{2,3}B.{2}C.{1,3,4}D.{2,4}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知|$\overrightarrow{a}$|=6,|$\overrightarrow$|=4,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則3$\overrightarrow{a}$•$\overrightarrow$=36.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.若f(x)是定義在R上的奇函數(shù),滿足f(x+1)=f(x-1),當x∈(0,1)時,f(x)=2x-2,則f(log${\;}_{\frac{1}{2}}$24)的值等于( 。
A.-$\frac{4}{3}$B.-$\frac{7}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在平面直角坐標系xOy中,已知點Q(1,2),P是動點,且△POQ的三邊所在直線的斜率滿足$\frac{1}{{k}_{op}}$+$\frac{1}{{k}_{OQ}}$=$\frac{1}{{k}_{PQ}}$.
(1)求點P的軌跡C的方程;
(2)過點F(1,0)作傾斜角為60°的直線L,交曲線C于A,B兩點,求△AOB的面積.

查看答案和解析>>

同步練習冊答案