1.各項均為非負整數(shù)的數(shù)列{an}同時滿足下列條件:
①a1=m(m∈N*);②an≤n-1(n≥2);③n是a1+a2+…+an的因數(shù)(n≥1).
(Ⅰ)當m=5時,寫出數(shù)列{an}的前五項;
(Ⅱ)若數(shù)列{an}的前三項互不相等,且n≥3時,an為常數(shù),求m的值;
(Ⅲ)求證:對任意正整數(shù)m,存在正整數(shù)M,使得n≥M時,an為常數(shù).

分析 (Ⅰ)當m=5時,寫出數(shù)列{an}的前五項;
(Ⅱ)對a2、a3分類取值,再結(jié)合各項均為非負整數(shù)列式求m的值;
(Ⅲ)令Sn=a1+a2+…+an,則$\frac{{{S_{n+1}}}}{n+1}<\frac{{{S_{n+1}}}}{n}=\frac{{{S_n}+{a_{n+1}}}}{n}≤\frac{{{S_n}+n}}{n}=\frac{S_n}{n}+1$.進一步推得存在正整數(shù)M>m,當n>M時,必有$\frac{{{S_{n+1}}}}{n+1}=\frac{S_n}{n}$成立.再由$\frac{{{S_{n+1}}}}{n+1}=\frac{S_n}{n}$成立證明an為常數(shù).

解答 (Ⅰ)解:m=5時,數(shù)列{an}的前五項分別為:5,1,0,2,2.
(Ⅱ)解:∵0≤an≤n-1,∴0≤a2≤1,0≤a3≤2,
又數(shù)列{an}的前3項互不相等,
(1)當a2=0時,
若a3=1,則a3=a4=a5=…=1,
且對n≥3,$\frac{m+0+(n-2)}{n}=\frac{m-2}{n}+1$都為整數(shù),∴m=2;
若a3=2,則a3=a4=a5=…=2,
且對n≥3,$\frac{m+0+2(n-2)}{n}=\frac{m-4}{n}+2$都為整數(shù),∴m=4;
(2)當a2=1時,
若a3=0,則a3=a4=a5=…=0,
且對n≥3,$\frac{m+1+0•(n-2)}{n}=\frac{m+1}{n}$都為整數(shù),∴m=-1,不符合題意;
若a3=2,則a3=a4=a5=…=2,
且對n≥3,$\frac{m+1+2(n-2)}{n}=\frac{m-3}{n}+2$都為整數(shù),∴m=3;
綜上,m的值為2,3,4.
(Ⅲ)證明:對于n≥1,令Sn=a1+a2+…+an,
則$\frac{{{S_{n+1}}}}{n+1}<\frac{{{S_{n+1}}}}{n}=\frac{{{S_n}+{a_{n+1}}}}{n}≤\frac{{{S_n}+n}}{n}=\frac{S_n}{n}+1$.
又對每一個n,$\frac{S_n}{n}$都為正整數(shù),∴$\frac{{{S_{n+1}}}}{n+1}$$≤\frac{S_n}{n}≤…≤\frac{S_1}{1}=m$,其中“<”至多出現(xiàn)m-1個.
故存在正整數(shù)M>m,當n>M時,必有$\frac{{{S_{n+1}}}}{n+1}=\frac{S_n}{n}$成立.
當$\frac{{{S_{n+1}}}}{n+1}=\frac{S_n}{n}$時,則${a_{n+1}}={S_{n+1}}-{S_n}=\frac{{(n+1){S_n}}}{n}-{S_n}=\frac{S_n}{n}$.
從而$\frac{{{S_{n+2}}}}{n+2}=\frac{{{a_{n+2}}+{a_{n+1}}+{S_n}}}{n+2}=\frac{{{a_{n+2}}+(n+1){a_{n+1}}}}{n+2}={a_{n+1}}+\frac{{{a_{n+2}}-{a_{n+1}}}}{n+2}$.
由題設(shè)知$\frac{{|{a_{n+2}}-{a_{n+1}}|}}{n+2}≤\frac{n+1}{n+2}<1$,又$\frac{{{S_{n+2}}}}{n+2}$及an+1均為整數(shù),
∴$\frac{{{S_{n+2}}}}{n+2}$=an+1=$\frac{S_n}{n}=\frac{{{S_{n+1}}}}{n+1}$,故$\frac{S_n}{n}=\frac{{{S_{n+1}}}}{n+1}=\frac{{{S_{n+2}}}}{n+2}=…$=常數(shù).
從而${a_{n+1}}={S_{n+1}}-{S_n}=\frac{{(n+1){S_n}}}{n}-{S_n}=\frac{S_n}{n}$=常數(shù).
故存在正整數(shù)M,使得n≥M時,an為常數(shù).

點評 本題考查數(shù)列遞推式,考查數(shù)列的前n項和,考查邏輯思維能力與推理運算能力,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ex-ax2-bx-1,其中a,b∈R,e為自然對數(shù)的底數(shù).|x-a|≥f(x)恒成立,求實數(shù)a的取值范圍.
(1)若函數(shù)f(x)在點(1,f(1))處的切線方程是y=(e-1)x-1,求實數(shù)a及b的值;
(2)設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.以下莖葉圖記錄了甲、乙兩組各六名學(xué)生在一次數(shù)學(xué)測試中的成績(單位:分),規(guī)定85分以上(含85分)為優(yōu)秀,現(xiàn)分別從甲、乙兩組中隨機選取一名同學(xué)的數(shù)學(xué)成績,則兩人成績都為優(yōu)秀的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)f(x)=x2•cosx在$[{-\frac{π}{2},\frac{π}{2}}]$的圖象大致是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.2017年3月14日,“ofo共享單車”終于來到蕪湖,ofo共享單車又被親切稱作“小黃車”是全球第一個無樁共享單車平臺,開創(chuàng)了首個“單車共享”模式.相關(guān)部門準備對該項目進行考核,考核的硬性指標是:市民對該項目的滿意指數(shù)不低于0.8,否則該項目需進行整改,該部門為了了解市民對該項目的滿意程度,隨機訪問了使用共享單車的100名市民,并根據(jù)這100名市民對該項目滿意程度的評分,繪制了如下頻率分布直方圖:
(I)為了了解部分市民對“共享單車”評分較低的原因,該部門從評分低于60分的市民中隨機抽取2人進行座談,求這2人評分恰好都在[50,60)的概率;
(II)根據(jù)你所學(xué)的統(tǒng)計知識,判斷該項目能否通過考核,并說明理由.
(注:滿意指數(shù)=$\frac{滿意程度的平均得分}{100}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a,b,c分別是△ABC的內(nèi)角A,B,C的對邊,2sin$\frac{7π}{6}$sin($\frac{π}{6}$+C)+cosC=-$\frac{1}{2}$.
(1)求C;
(2)若c=$\sqrt{13}$,且△ABC面積為3$\sqrt{3}$,求sinA+sinB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知復(fù)數(shù)z滿足(1+i)z=3+i,其中i是虛數(shù)單位,則|z|=( 。
A.10B.$\sqrt{10}$C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知點A(0,0),若函數(shù)f(x)的圖象上存在兩點B、C到點A的距離相等,則稱該函數(shù)f(x)為“點距函數(shù)”,給定下列三個函數(shù):①y=-x+2;②$y=\sqrt{1-{x^2}}$;③y=x+1.其中,“點距函數(shù)”的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴重的A城市和交通擁堵嚴重的B城市分別隨機調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖如圖:

(Ⅰ)根據(jù)莖葉圖,比較兩城市滿意度評分的平均值的大小及方差的大。ú灰笥嬎愠鼍唧w值,給出結(jié)論即可);
(Ⅱ)若得分不低于80分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據(jù)此樣本完成此2×2列聯(lián)表,并據(jù)此樣本分析是否有95%的把握認為城市擁堵與認可共享單車有關(guān);
  A B 合計
 認可   
 不認可   
 合計   
(Ⅲ)若從此樣本中的A城市和B城市各抽取1人,則在此2人中恰有一人認可的條件下,此人來自B城市的概率是多少?
附:參考數(shù)據(jù):
(參考公式:${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$)

查看答案和解析>>

同步練習(xí)冊答案