如圖,在四棱錐中,底面是直角梯形,,,⊥平面SAD,點(diǎn)的中點(diǎn),且.

  

(1)求四棱錐的體積;

(2)求證:∥平面;

(3)求直線和平面所成的角的正弦值.

 

【答案】

(1) 

(2) 取的中點(diǎn),連接、。

 ,

∴ 四邊形是平行四邊形

得到∥平面 ;

(3)。

【解析】

試題分析:∵⊥底面,底面,底面

,                           

,、是平面內(nèi)的兩條相交直線

∴ 側(cè)棱底面                       2分

在四棱錐中,側(cè)棱底面,底面是直角梯形,,,

∴      4分

(2) 取的中點(diǎn),連接、。

∵ 點(diǎn)的中點(diǎn)   ∴ 

∵ 底面是直角梯形,垂直于,,

∴ 四邊形是平行四邊形

,

∥平面       8分

(3)∵ 側(cè)棱底面,底面

垂直于、是平面內(nèi)的兩條相交直線

,垂足是點(diǎn)

在平面內(nèi)的射影,

是直線和平面所成的角

∵ 在中,    ∴

∴ 直線和平面所成的角的正弦值是      13分

考點(diǎn):本題主要考查立體幾何中的平行關(guān)系、垂直關(guān)系,體積及角的計(jì)算。

點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離的計(jì)算。在計(jì)算問(wèn)題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,利用向量則能簡(jiǎn)化證明過(guò)程。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2010-2011年廣西省桂林中學(xué)高二下學(xué)期期中考試數(shù)學(xué) 題型:解答題

((本小題滿分12分)
如圖,在四棱錐中,底面是矩形.已知


(1)證明平面;
(2)求異面直線所成的角的大;
(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆福建省三明市高三第一學(xué)期測(cè)試?yán)砜茢?shù)學(xué)試卷 題型:解答題

如圖,在四棱錐中,底面是菱形,,,,平面,的中點(diǎn),的中點(diǎn).    

(Ⅰ) 求證:∥平面;

(Ⅱ)求證:平面⊥平面

(Ⅲ)求平面與平面所成的銳二面角的大小.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆上海市高二年級(jí)期終考試數(shù)學(xué) 題型:解答題

(本題滿分16分)

如圖,在四棱錐中,底面是矩形.已知

(1)證明平面;

(2)求異面直線所成的角的大小;

(3)求二面角的大小.

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高二下學(xué)期期末考試附加卷數(shù)學(xué)卷 題型:解答題

如圖,在四棱錐中,底面是正方形,側(cè)棱,中點(diǎn),作

(1)求PF:FB的值

(2)求平面與平面所成的銳二面角的正弦值。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011屆浙江省高三6月考前沖刺卷數(shù)學(xué)理 題型:解答題

(本小題滿分14分)

如圖,在四棱錐中,底面為平行四邊形,平面,在棱上.

(Ⅰ)當(dāng)時(shí),求證平面

(Ⅱ)當(dāng)二面角的大小為時(shí),求直線與平面所成角的正弦值.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案