如圖1,在Rt△ABC中,∠ABC=90°,DAC中點,(不同于點),延長AEBCF,將△ABD沿BD折起,得到三棱錐,如圖2所示.

(1)若MFC的中點,求證:直線//平面;
(2)求證:BD;
(3)若平面平面,試判斷直線與直線CD能否垂直?并說明理由.

(1)詳見解析,(2)詳見解析,(3)不能垂直.

解析試題分析:(1)折疊問題注意折疊前后直線平行與垂直關(guān)系是否變化,若不變,則成為隱含條件.本題中,折疊前,分別為中點,所以//,且折疊后仍不變,這就是證線面平行的關(guān)鍵條件.應(yīng)用線面平行判定定理證明時,需寫全定理所需全部條件.(2)同樣,折疊前,折疊后這一條件對應(yīng)變化為,由線面垂直判定定理可證結(jié)論.注意必須交代是平面中兩條相交直線.(3)判斷直線與直線CD能否垂直,從假設(shè)垂直出發(fā)比較好推理論證.若直線與直線CD垂直,又由可得,即有因而可推得,即有,又在同一平面內(nèi),所以重合,這與題意矛盾.
試題解析:解:
(1)因為,分別為中點,所以//          2分

所以.           4分
(2)因為,
所以      7分

所以            9分
(3)直線與直線不能垂直                   10分
因為,,,

所以.                   12分
因為,所以,
又因為,所以.
假設(shè),
因為,,
所以,                     13分
所以,
這與為銳角矛盾
所以直線與直線不能垂直.                   14分
考點:線面平行判定定理,線面垂直判定定理

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱柱ABCD—A1B1C1D1中,側(cè)棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.

(1)證明B1C1⊥CE;
(2)求二面角B1­CE­C1的正弦值;
(3)設(shè)點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在直三棱柱中,,.若的中點,求直線與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖1,在直角梯形中,,,,點中點.將沿折起,使平面平面,得到幾何體,如圖2所示.

(1)在上找一點,使平面;
(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知多面體ABCDFE中, 四邊形ABCD為矩形,AB∥EF,AF⊥BF,平面ABEF⊥平面ABCD, O、M分別為AB、FC的中點,且AB = 2,AD =" EF" = 1.

(1)求證:AF⊥平面FBC;
(2)求證:OM∥平面DAF;
(3)設(shè)平面CBF將幾何體EFABCD分成的兩個錐體的體積分別為VF-ABCD,VF-CBE,求VF-ABCD∶VF-CBE的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖, 已知四邊形ABCD和BCEG均為直角梯形,ADBC,CEBG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.

(1)求證: ECCD;
(2)求證:AG∥平面BDE;
(3)求:幾何體EG-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在中,,斜邊可以通過 以直線為軸旋轉(zhuǎn)得到,且二面角是直二面角.動點在斜邊上.

(1)求證:平面平面;
(2)求與平面所成角的最大角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,四棱錐EABCD中,EA=EB,AB∥CD,AB⊥BC,AB=2CD.

(1)求證:AB⊥ED;
(2)線段EA上是否存在點F,使DF∥平面BCE?若存在,求出;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形ABCD為正方形,在四邊形ADPQ中,PD∥QA.又QA⊥平面ABCD,QA=AB=PD.

(1)證明:PQ⊥平面DCQ;
(2)CP上是否存在一點R,使QR∥平面ABCD,若存在,請求出R的位置,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案