函數(shù),其中為常數(shù),且函數(shù)和
的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行,求此時(shí)平行線的距離。
解析試題分析:由題意可知,
函數(shù)的圖象與坐標(biāo)軸的交點(diǎn)為,的圖象與坐標(biāo)軸的交點(diǎn)為,
又因?yàn)楹瘮?shù)和的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線互相平行,
所以,即,
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/bf/f/v62bl.png" style="vertical-align:middle;" />,所以,
所以
所以函數(shù)和的圖象在其與坐標(biāo)軸的交點(diǎn)處的切線分別為:,
根據(jù)兩平行線間的距離公式可知,兩平行線間的距離為.
考點(diǎn):本小題主要考查利用導(dǎo)數(shù)研究切線上某點(diǎn)處的方程.
點(diǎn)評(píng):本小題主要考查導(dǎo)數(shù)的應(yīng)用,研究切線上某點(diǎn)處的切線方程時(shí),要分清是某點(diǎn)處的切線還是過(guò)某點(diǎn)的切線,兩者是不同的.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)的導(dǎo)數(shù)滿足,其中.
求曲線在點(diǎn)處的切線方程;
設(shè),求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)為常數(shù),e是自然對(duì)數(shù)的底數(shù).
(Ⅰ)當(dāng)時(shí),證明恒成立;
(Ⅱ)若,且對(duì)于任意,恒成立,試確定實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若函數(shù)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù),若在上至少存在一點(diǎn),使得>成立,求實(shí)數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),其中常數(shù).
(1)求的單調(diào)區(qū)間;
(2)如果函數(shù)在公共定義域D上,滿足,那么就稱 為與的“和諧函數(shù)”.設(shè),求證:當(dāng)時(shí),在區(qū)間上,函數(shù)與的“和諧函數(shù)”有無(wú)窮多個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)在區(qū)間上是增函數(shù),在區(qū)間,上是減函數(shù),又
(1)求的解析式;
(2)若在區(qū)間上恒有成立,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)若對(duì)任意的恒成立,求實(shí)數(shù)的最小值.
(2)若且關(guān)于的方程在上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)設(shè)各項(xiàng)為正的數(shù)列滿足:求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(Ⅰ)若,試確定函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,且對(duì)于任意,恒成立,試確定實(shí)數(shù)的取值范圍;
(Ⅲ)設(shè)函數(shù),求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com