設(shè)向量滿足

(1)求夾角的大小;   (2)求的值.

 

【答案】

  (1).         (2)|3a+b|=

【解析】

試題分析:(1)根據(jù)題意,由于,且有,那么兩邊平方可知

,根據(jù)向量的平方等于模長(zhǎng)的平方可知

(2)那么對(duì)于|3a+b| =9+1+2,故|3a+b|=

考點(diǎn):向量的數(shù)量積

點(diǎn)評(píng):主要是考查向量的數(shù)量積的公式的運(yùn)用,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
,
b
滿足|
a
|=|
b
|=1及|3
a
-2
b
|=
7

(Ⅰ)求
a
,
b
夾角的大。弧  
(Ⅱ)求|3
a
+
b
|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線的方向向量為及定點(diǎn),動(dòng)點(diǎn)滿足,
MN
+
MF
=2
MG
MG
•(
MN
-
MF
)=0
,其中點(diǎn)N在直線l上.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)設(shè)A、B是軌跡C上異于原點(diǎn)O的兩個(gè)不同動(dòng)點(diǎn),直線OA和OB的傾斜角分別為α和β,若α+β=θ為定值(0<θ<π),試問直線AB是否恒過定點(diǎn),若AB恒過定點(diǎn),請(qǐng)求出該定點(diǎn)的坐標(biāo),若AB不恒過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x軸、y軸正方向上的單位向量分別是
i
、
j
,坐標(biāo)平面上點(diǎn)An、Bn(n∈N*)分別滿足下列兩個(gè)條件:
OA1
=4
j
An-1A
n
=
i
(n∈N*,n≥2);
OB1
=
i
+
1
2
j
Bn-1Bn
=-
1
n(n+1)
j
(n∈N*,n≥2)
.(其中O為坐標(biāo)原點(diǎn))
(I)求向量
OAn
及向量
OBn
的坐標(biāo);
(II)設(shè)an=
OAn
OBn
,求an的通項(xiàng)公式并求an的最小值;
(III)對(duì)于(Ⅱ)中的an,設(shè)數(shù)列bn=
sin
2
cos
(n-1)π
2
(n+1)an-6n+3
,Sn為bn的前n項(xiàng)和,證明:對(duì)所有n∈N*都有Sn
89
48

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題共12分).(1)設(shè)向量滿足,求的值。

(2)在數(shù)列中,已知,求

查看答案和解析>>

同步練習(xí)冊(cè)答案