已知,函數(shù)
(1)求的極小值;
(2)若上為單調(diào)增函數(shù),求的取值范圍;
(3)設(shè),若在是自然對數(shù)的底數(shù))上至少存在一個,使得成立,求的取值范圍.
(1).(2) 的取值范圍是
(3)要在上存在一個,使得,必須且只需

試題分析:(1)由題意,,,∴當時,;當時,,所以,上是減函數(shù),在上是增函數(shù),故.  4分
(2) ,,由于內(nèi)為單調(diào)增函數(shù),所以上恒成立,即上恒成立,故,所以的取值范圍是. 9分
(3)構(gòu)造函數(shù)
時,由得,,所以在上不存在一個,使得
時,,因為,所以,所以上恒成立,故上單調(diào)遞增,,所以要在上存在一個,使得,必須且只需,解得,故的取值范圍是
另法:(Ⅲ)當時,
時,由,得 , 令,則,所以上遞減,
綜上,要在上存在一個,使得,必須且只需
點評:難題,本題屬于導數(shù)應(yīng)用中的基本問題,通過研究函數(shù)的單調(diào)性,明確了極值情況。通過研究函數(shù)的單調(diào)區(qū)間、極值,最終確定最值情況。涉及恒成立問題,往往通過構(gòu)造函數(shù),研究函數(shù)的最值,得到解題目的。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

,,則,,從小到大的順序為        

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是定義在R上的函數(shù),且對任意,都有,又,則等于(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)為常數(shù),函數(shù),若上是增函數(shù),則的取值范圍是___________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),則=(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),。
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若的圖象恰有兩個交點,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)在區(qū)間內(nèi)恒有,則函數(shù)的單調(diào)遞減區(qū)間是                 .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(1)若曲線在點處的切線與直線垂直,求實數(shù)的值.
(2)若,求的最小值
(3)在(Ⅱ)上求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知,函數(shù)若函數(shù)上的最大值比最小值大,則的值為             .

查看答案和解析>>

同步練習冊答案