解答:解:(1)對函數(shù)f(x)求導(dǎo),
f′(x)=•.
令f'(x)=0得x=1或x=-1.
當(dāng)x∈(0,1)時,f'(x)>0,f(x)在(0,1)上單調(diào)遞增;
當(dāng)x∈(1,2)時,f'(x)<0,f(x)在(1,2)上單調(diào)遞減.
又
f(0)=0,f(1)=,f(2)=,
所以當(dāng)x∈[0,2],f(x)的值域是
[0,];
(2)設(shè)函數(shù)g(x)在[0,2]上的值域是A.
∵對任意x
1∈[0,2],總存在x
0∈[0,2],使f(x
1)-g(x
0)=0,
∴
[0,]⊆A.
對函數(shù)g(x)求導(dǎo),g'(x)=ax
2-a
2.
①當(dāng)a<0時,若x∈(0,2),g'(x)<0,所以函數(shù)g(x)在(0,2)上單調(diào)遞減.
∵
g(0)=0,g(2)=a-2a2<0,
∴當(dāng)x∈[0,2]時,不滿足
[0,]⊆A;
②當(dāng)a>0時,
g′(x)=a(x-)(x+).
令g'(x)=0,得
x=或
x=-(舍去).
(i)當(dāng)x∈[0,2],
0<<2時,列表:
∵
g(0)=0,g()<0,
又∵
[0,]⊆A,∴
g(2)=a-2a2≥,解得
≤a≤1.
(ii)當(dāng)x∈(0,2),
≥2時,g'(x)<0,∴函數(shù)在(0,2)上單調(diào)遞減,
∵g(0)=0,∴
g(2)=a-2a2<0∴當(dāng)x∈[0,2]時,不滿足
[0,]⊆A.
綜上,實數(shù)a的取值范圍是
[,1].