14.若雙曲線$\frac{x^2}{2-k}+\frac{y^2}{k-1}$=1的焦點在x軸上,則實數(shù)k的取值范圍是(  )
A.(一∞,1)B.(2,+∞)C.(1,2)D.(一∞,1)U(2,+∞)

分析 將雙曲線方程化為標準方程,由題意可得2-k>0,1-k>0,解不等式即可得到所求范圍.

解答 解:雙曲線$\frac{x^2}{2-k}+\frac{y^2}{k-1}$=1的焦點在x軸上,
可得$\frac{{x}^{2}}{2-k}$-$\frac{{y}^{2}}{1-k}$=1,
即有2-k>0,1-k>0,
即k<2且k<1,
則k<1.
故選:A.

點評 本題考查雙曲線的方程和性質(zhì),同時考查不等式的解法,考查運算求解能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=|x-2|-|x+1|-1,g=-x+a.
(1)求不等式f(x)≥0的解集;
(2)若方程f(x)=g(x)有三個不同的解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設(shè)關(guān)于x的方程2x2-ax-2=0(a∈R))的兩個實根為α、β(α<β),函數(shù)$f(x)=\frac{4x-a}{{{x^2}+1}}$.
(Ⅰ)求f(α),f(β)的值(結(jié)果用含有a的最簡形式表示);
(Ⅱ)函數(shù)f(x)在R上是否有極值,若有,求出極值;沒有,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若在區(qū)間[0,4]上任取一個數(shù)m,則函數(shù)f(x)=$\frac{1}{3}$x3-x2+mx在R上是單調(diào)增函數(shù)的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知向量$\overrightarrow{m}$=(sinx,$\frac{3}{4}$),$\overrightarrow{n}$=(cosx,-1),則△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,若acosC+$\frac{\sqrt{2}}{2}$c=b.
(1)當$\overrightarrow{m}∥\overrightarrow{n}$時,求sin2x+sin2x的值;
(2)設(shè)函數(shù)f(x)=2($\overrightarrow{m}+\overrightarrow{n}$)$•\overrightarrow{n}$,求f(A)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.在等差數(shù)列{an}中,已知a3=5,a2+a5=12,an=4a4+1,則n=15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.下列語句表示的事件中的因素不具有相關(guān)關(guān)系的是( 。
A.瑞雪兆豐年B.名師出高徒
C.吸煙有害健康D.喜鵲叫喜,烏鴉叫喪

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$,AB=1,M是PB的中點.
(1)求證:MC∥平面PAD;
(2)求PC與平面MAC所形成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為矩形,AB=2,BC=4,PA=4,則該四棱錐外接球的表面積為( 。
A.B.36πC.72πD.144π

查看答案和解析>>

同步練習冊答案