【題目】下列四個命題中,假命題是_________ (填序號).
①經(jīng)過定點P(x0,y0)的直線不一定都可以用方程y-y0=k(x-x0)表示;
②經(jīng)過兩個不同的點P1(x1,y1)、P2(x2,y2)的直線都可以用
方程(y-y1)(x2-x1)=(x-x1)(y2-y1)來表示;
③與兩條坐標(biāo)軸都相交的直線不一定可以用方程表示;
④經(jīng)過點Q(0,b)的直線都可以表示為y=kx+b.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解學(xué)校食堂的服務(wù)情況,隨機(jī)調(diào)查了50名就餐的教師和學(xué)生.根據(jù)這50名師生對餐廳服務(wù)質(zhì)量進(jìn)行評分,繪制出了頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組為.
(1)求頻率分布直方圖中的值;
(2)從評分在的師生中,隨機(jī)抽取2人,求此人中恰好有1人評分在上的概率;
(3)學(xué)校規(guī)定:師生對食堂服務(wù)質(zhì)量的評分不得低于75分,否則將進(jìn)行內(nèi)部整頓,試用組中數(shù)據(jù)估計該校師生對食堂服務(wù)質(zhì)量評分的平均分,并據(jù)此回答食堂是否需要進(jìn)行內(nèi)部整頓.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若是在定義域內(nèi)的增函數(shù),求的取值范圍;
(2)若函數(shù)(其中為的導(dǎo)函數(shù))存在三個零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線:(為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,且與相交于兩點.
(1)當(dāng)時,判斷直線與曲線的位置關(guān)系,并說明理由;
(2)當(dāng)變化時,求弦的中點的普通方程,并說明它是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求適合下列條件的直線方程:
(1)經(jīng)過點P(3,2)且在兩坐標(biāo)軸上的截距相等;
(2)經(jīng)過點A(-1,-3),傾斜角等于直線y=3x的傾斜角的2倍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè).
①若函數(shù)在處的切線過點,求的值;
②當(dāng)時,若函數(shù)在上沒有零點,求的取值范圍.
(2)設(shè)函數(shù),且,求證: 當(dāng)時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè).
①若函數(shù)在處的切線過點,求的值;
②當(dāng)時,若函數(shù)在上沒有零點,求的取值范圍.
(2)設(shè)函數(shù),且,求證: 當(dāng)時,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),分別為橢圓:()的左、右兩個焦點.
(1)若橢圓上的點到,兩點的距離之和等于,求橢圓的方程和焦點坐標(biāo);
(2)設(shè)點是(1)中所得橢圓上的動點,,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,若在區(qū)間上的最小值為,求的取值范圍;
(2)若對任意,且恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com