如果一個(gè)數(shù)列的各項(xiàng)都是實(shí)數(shù),且從第二項(xiàng)開始,每一項(xiàng)與它前一項(xiàng)的平方差是相同的常數(shù),則稱該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫這個(gè)數(shù)列的公方差.
(1)設(shè)數(shù)列是公方差為(p>0,an >0)的等方差數(shù)列,的通項(xiàng)公式;
(2)若數(shù)列既是等方差數(shù)列,又是等差數(shù)列,證明該數(shù)列為常數(shù)列
(1)(2)略
由等方差數(shù)列的定義可知:,
由此可得:
(2)證法一:∵是等差數(shù)列,設(shè)公差為,則
是等方差數(shù)列,∴……………8分

,……….10分
,即是常數(shù)列.………………12分
證法二:∵是等差數(shù)列,設(shè)公差為,則……1
是等方差數(shù)列,設(shè)公方差為,則……2………….8分
1代入2得,……3
同理有,……4………….10分
兩式相減得:即,
,即是常數(shù)列.…………..12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列中,;
(1)設(shè).證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

a、b、c成等比數(shù)列,則fx)=ax2+bx+c的圖象與x軸的交點(diǎn)有    個(gè)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)向量a =(),b =()(),函數(shù) a·b在[0,1]上的最小值與最大值的和為,又?jǐn)?shù)列{}滿足:
(1)求證:;
(2)求的表達(dá)式;
(3),試問數(shù)列{}中,是否存在正整數(shù),使得對(duì)于任意的正整數(shù),都有成立?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)+的圖象通過原點(diǎn),對(duì)稱軸為,的導(dǎo)函數(shù),且 .
(I)求的表達(dá)式;
(II)若數(shù)列滿足,且,求數(shù)列的通項(xiàng)公式;
(III)若,,是否存在自然數(shù)M,使得當(dāng)時(shí)
恒成立?若存在,求出最小的M;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知是正數(shù)組成的數(shù)列,,且點(diǎn)()(nN*)在函數(shù)的圖象上.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)若數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將正分割成個(gè)全等的小正三角形(圖2,圖3分別給出了n="2," 3的情形),在每個(gè)三角形的頂點(diǎn)各放置一個(gè)數(shù),使位于⊿ABC的三邊及平行于某邊的任一直線上的數(shù)(當(dāng)數(shù)的個(gè)數(shù)不少于3時(shí))都分別依次成等差數(shù)列.若頂點(diǎn)A ,B ,C處的三個(gè)數(shù)互不相同且和為1,記所有頂點(diǎn)上的數(shù)之和為,則有,        ,… ,             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知成等差數(shù)列,且為方程方程的兩根,則等于         。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè) ,則對(duì)任意正整數(shù)都成立的是( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案