10.已知集合A={x|3≤x<6},B={x|2<x<9}.
(1)分別求A∩B,A∪B;
(2)已知C={x|a<x<a+1},若C⊆B,求實(shí)數(shù)a的取值集合.

分析 (1)根據(jù)集合的基本運(yùn)算即可求A∩B,A∪B;
(2)根據(jù)C⊆B,建立條件關(guān)系即可求實(shí)數(shù)a的取值范圍.

解答 解:(1)由題意,集合A={x|3≤x<6},B={x|2<x<9}.
那么:A∩B={x|3≤x<6},
A∪B={x|2<x<9}.
(2)C={x|a<x<a+1},B={x|2<x<9}.
∵C⊆B,
∴$\left\{\begin{array}{l}{a≥2}\\{a+1≤9}\end{array}\right.$,
解得:2≤a≤8.
故得實(shí)數(shù)a的取值的集合為{a|2≤a≤8}.

點(diǎn)評 本題主要考查集合的基本運(yùn)算,比較基礎(chǔ)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,$\overrightarrow{M}$=(a+b,a-c),$\overrightarrow{N}$=(sin(A+B),sinA-sinB),且$\overrightarrow{M}$與$\overrightarrow{N}$共線.(1)求角B;
(2)若b=3且sinA=$\frac{\sqrt{3}}{3}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若函數(shù)y=f(x)的定義域是[0,2],則函數(shù)g(x)=$\frac{f(2x)}{{{{log}_3}({2^x}+1)}}$的定義域?yàn)閇0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義在R上的奇函數(shù)f(x),當(dāng)x>0時(shí),f(x)=lg(3x+1),則f(-3)=( 。
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)y=4x-6×2x+8,求該函數(shù)的最小值,及取得最小值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知三角形ABC中,AB=AC,AC邊上的中線長為3,當(dāng)三角形ABC的面積最大時(shí),AB的長為(  )
A.$2\sqrt{5}$B.3$\sqrt{6}$C.2$\sqrt{6}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在公比為正數(shù)的等比數(shù)列{an}中,a3-a1=$\frac{16}{27}$,a2=-$\frac{2}{9}$,數(shù)列{bn}(bn>0)的前n項(xiàng)和為Sn滿足Sn-Sn-1=$\sqrt{S_n}+\sqrt{{S_{n-1}}}$(n≥2),且S10=100.
( I)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
( II)求數(shù)列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=sin(4x-2),則f′(x)=4cos(4x-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={x|2x2+ax+2=0,a∈R},B={x|x2+3x+2a=0,a∈R},A∩B={2}且A∪B=I,則(∁IA)∪(∁IB)=( 。
A.{-5,$\frac{1}{2}$}B.{-5,$\frac{1}{2}$,2}C.{-5,2}D.{$\frac{1}{2}$,2}

查看答案和解析>>

同步練習(xí)冊答案