分析 (Ⅰ)由已知利用勾股定理可求AB,求得cosB,進(jìn)而利用余弦定理可求AD的值.
(Ⅱ)在△ADC中,由正弦定理及已知可求$\frac{{\sqrt{2}DC}}{sinB}=\frac{DC}{sin(B-C)}$,又$B=\frac{π}{2}-C$,即可解得sinB的值.
解答 解:(Ⅰ)∵D是直角△ABC斜邊BC上一點(diǎn),$AC=\sqrt{2}DC$,BD=2DC=2,
∴AB=$\sqrt{B{C}^{2}-A{C}^{2}}$=$\sqrt{7}$,
∴cosB=$\frac{AB}{BC}$=$\frac{\sqrt{7}}{3}$,
∴AD=$\sqrt{A{B}^{2}+B{D}^{2}-2AB•AD•cosB}$=$\sqrt{7+4-2×\sqrt{7}×2×\frac{\sqrt{7}}{3}}$
=$\frac{\sqrt{15}}{3}$.
(Ⅱ)在△ADC中,$\frac{AC}{sin∠ADC}=\frac{DC}{sin∠CAD}$即$\frac{{\sqrt{2}DC}}{sinB}=\frac{DC}{sin(B-C)}$,
而$B=\frac{π}{2}-C$,
∴$\frac{{\sqrt{2}}}{sinB}=\frac{1}{{sin(2B-\frac{π}{2})}}$,
∴-$\sqrt{2}$cos2B=sinB,
∴$2\sqrt{2}si{n}^{2}B-sinB-\sqrt{2}$=0,
解得$sinB=\frac{{\sqrt{2}+\sqrt{34}}}{8}$.
點(diǎn)評(píng) 本題主要考查了勾股定理,余弦定理,正弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若$\frac{1}{x}$=$\frac{1}{y}$,則x=y | B. | 若x2≤4,則x=1 | C. | 若x=y,則$\sqrt{x}$=$\sqrt{y}$ | D. | 若x<y,則 x2<y2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等腰三角形 | B. | 鈍角三角形 | C. | 銳角三角形 | D. | 直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
編號(hào) | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 |
直徑 | 151 | 148 | 149 | 151 | 149 | 152 | 147 | 146 | 153 | 148 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y′=x2cosx-2xsin x | B. | y′=2xcos x+x2sin x | ||
C. | y′=2xcosx-x2sinx | D. | y′=xcosx-x2sin x |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com