1.已知一個正方體的頂點(diǎn)都在同一球面上,若球的半徑為$\sqrt{3}$,則該正方體的表面積24.

分析 利用正方體的對角線為球的直徑,求出正方體的棱長,即可求得正方體的表面積.

解答 解:∵正方體的頂點(diǎn)都在一個球面上,
∴正方體的對角線為球的直徑.
設(shè)正方體的棱長為a,
∵球的半徑為$\sqrt{3}$,
∴$\sqrt{3}a$=2$\sqrt{3}$
∴a=2,
∴該正方體的表面積為6a2=24,
故答案為:24.

點(diǎn)評 本題考查球的內(nèi)接幾何體,考查正方體的表面積,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在數(shù)列{an}中,設(shè)ai=2m(i∈N*,3m-2≤i<3m+1,m∈N*),Si=ai+ai+3+ai+6+ai+9+ai+12,則滿足Si∈[1000,3000]的i的值為16或17或18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖所示的幾何體中,四邊形ABCD為梯形,AD∥BC,AB⊥平面BEC,EC⊥CB,已知BC=2AD=2AB=2.
(Ⅰ)證明:BD⊥平面DEC;
(Ⅱ)若二面角A-ED-B的大小為30°,求EC的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖是一個幾何體的三視圖,正視圖是邊長為2的正三角形,俯視圖是等腰直角三角形,該幾何體的表面積為$4+\sqrt{3}+\sqrt{7}$,體積為$\frac{{2\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知棱長為a的正三棱柱ABC-A1B1C1的六個頂點(diǎn)都在半徑為$\frac{\sqrt{21}}{6}$的球面上,則a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知正方體ABCD-A1B1C1D1的棱長a=2,P為該正方體的內(nèi)切球的表面上的動點(diǎn),且始終有AP⊥A1C,則動點(diǎn)P的軌跡的長度為(  )
A.$\frac{{\sqrt{3}π}}{3}$B.$\frac{{\sqrt{6}π}}{3}$C.$\frac{{2\sqrt{3}π}}{3}$D.$\frac{{2\sqrt{6}π}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某課題組對全班45名同學(xué)的飲食習(xí)慣進(jìn)行了一次調(diào)查,并用莖葉圖表示45名同學(xué)的飲食指數(shù).說明:如圖中飲食指數(shù)低于70的人被認(rèn)為喜食蔬菜,飲食指數(shù)不低于70的人被認(rèn)為喜食肉類
(1)求飲食指數(shù)在[10,39]女同學(xué)中選取2人,恰有1人在[10,29]中的概率;
(2)根據(jù)莖葉圖,完成下面2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為喜食蔬菜還是喜食肉類與性別有關(guān),說明理由:
喜食蔬菜喜食肉類合計(jì)
男同學(xué)
女同學(xué)
合計(jì)
附:參考公式:X2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
下面臨界值表僅供參考:
P(K2≥k)0.1000.050.010
k2.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x3-3ax-1,a≠0.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若f(x)在x=-1處取得極值,且函數(shù)g(x)=f(x)-m有三個零點(diǎn),求實(shí)數(shù)m的取值范圍;
(Ⅲ)設(shè)h(x)=f(x)+(3a-1)x+1,證明過點(diǎn)P(2,1)可以作曲線h(x)的三條切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某幾何體的三視圖如圖所示,則該幾何體的體積為46.

查看答案和解析>>

同步練習(xí)冊答案