7.直線y=-x-1的傾斜角為(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

分析 設(shè)直線y=-x-1的傾斜角為θ,θ∈[0,π),可得tanθ=-1,解得θ.

解答 解:設(shè)直線y=-x-1的傾斜角為θ,θ∈[0,π),
則tanθ=-1,解得θ=$\frac{3π}{4}$.
故選:D.

點(diǎn)評(píng) 本題考查了直線的斜率與傾斜角的關(guān)系,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),公比為q,且滿足:a1=3,b1=1,b2+S2=12,S2=b2q.
(1)求an與bn;
(2)設(shè)cn=3bn-2λ•$\frac{{a}_{n}}{3}$(λ∈R),若數(shù)列{cn}是遞增數(shù)列,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列說(shuō)法正確的是( 。
A.函數(shù)的極大值就是函數(shù)的最大值
B.函數(shù)的極小值就是函數(shù)的最小值
C.函數(shù)的最值一定是極值
D.閉區(qū)間上的連續(xù)函數(shù)一定存在最大值與最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知$2\overrightarrow a+\overrightarrow b=(3\;,\;3)\;,\;\;\overrightarrow a-\overrightarrow b=(3\;,\;0)$.
求(1)$\overrightarrow b$的單位向量$\overrightarrow{b_0}$;
(2)$\overrightarrow a\;在\;\overrightarrow b$方向上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=alnx-x+$\frac{1}{x}$,g(x)=x2+x-b.y=f(x)圖象恒過(guò)定點(diǎn)P,且P點(diǎn)既在y=g(x)圖象上,又在y=f(x)的導(dǎo)函數(shù)的圖象上.
(Ⅰ)求a、b的值;
(Ⅱ)設(shè)h(x)=$\frac{f(x)}{g(x)}$,求證:當(dāng)x>0且x≠1時(shí),h(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.閱讀下列材料,回答后面問(wèn)題:
在2014年12月30日CCTV13播出的“新聞直播間”節(jié)目中,主持人說(shuō):“…加入此次亞航失聯(lián)航班QZ8501被證實(shí)失事的話,2014年航空事故死亡人數(shù)將達(dá)到1320人.盡管如此,航空安全專家還是提醒:飛機(jī)仍是相對(duì)安全的交通工具.①世界衛(wèi)生組織去年公布的數(shù)據(jù)顯示,每年大約有124萬(wàn)人死于車(chē)禍,而即使在航空事故死亡人數(shù)最多的一年,也就是1972年,其死亡數(shù)字也僅為3346人;②截至2014年9月,每百萬(wàn)架次中有2.1次(指飛機(jī)失事),乘坐汽車(chē)的百萬(wàn)人中其死亡人數(shù)在100人左右.”
對(duì)上述航空專家給出的①、②兩段表述(劃線部分),你認(rèn)為不能夠支持“飛機(jī)仍是相對(duì)安全的交通工具”的所有表述序號(hào)為①,你的理由是數(shù)據(jù)①雖是同類數(shù)據(jù),但反映不出乘車(chē)出行和乘飛機(jī)出行的總?cè)藬?shù)的關(guān)系;
數(shù)據(jù)②兩個(gè)數(shù)據(jù)不是同一類數(shù)據(jù),這與每架次飛機(jī)的乘機(jī)人數(shù)有關(guān);但是可以做如下大致估算,考慮平均每架次飛機(jī)的乘機(jī)人數(shù)為x,這樣每百萬(wàn)人乘機(jī)死亡人數(shù)2.1人,要遠(yuǎn)遠(yuǎn)少于乘車(chē)每百萬(wàn)人中死亡人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=$\frac{1}{2}$ax2+bx+1,其中a∈{2,4},b∈{1,3},從f(x)中隨機(jī)抽取1個(gè),則它在(-∞,-1]上是減函數(shù)的概率為( 。
A.$\frac{1}{2}$B.$\frac{3}{4}$C.$\frac{1}{6}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知正方體的外接球的體積為$\frac{32}{3}π$,則該正方體的表面積為( 。
A.$\frac{{4\sqrt{3}}}{3}$B.$\frac{16}{3}$C.$\frac{64}{3}$D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江西省南昌市高一下學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題

執(zhí)行右邊的程序框圖,輸出S的值為( )

A.14 B.20 C.30 D.55

查看答案和解析>>

同步練習(xí)冊(cè)答案