(2013•萊蕪二模)已知雙曲線
x2
a2
-
y2
b2
=1
的實軸長為2,焦距為4,則該雙曲線的漸近線方程是( 。
分析:通過雙曲線的幾何性質(zhì),直接求出a,b,c,然后求出
b
a
,求出雙曲線的漸近線方程.
解答:解:雙曲線
x2
a2
-
y2
b2
=1
的實軸長為2,焦距為4,
所以2a=2,2c=4,所以a=1,c=2,b=
c2-a2
=
3
,
故有
b
a
=
3

所以雙曲線的漸近線方程為:y=±
3
x.
故選C.
點評:本題是基礎(chǔ)題,考查雙曲線的基本性質(zhì),雙曲線的漸近線的求法,考查計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•萊蕪二模)已知函數(shù)f(x)=x-4+
9
x+1
(x>-1)
,當x=a時,f(x)取得最小值,則在直角坐標系中,函數(shù)g(x)=(
1
a
)|x+1|
的大致圖象為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•萊蕪二模)復(fù)數(shù)z=
i3
1+i
在復(fù)平面內(nèi)對應(yīng)的點位于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•萊蕪二模)集合A={x||x+1|≤3},B={y|y=
x
,0≤x≤4}
.則下列關(guān)系正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•萊蕪二模)已知m,n是兩條不同直線,α,β是兩個不同平面,給出四個命題:
①若α∩β=m,n?α,n⊥m,則α⊥β
②若m⊥α,m⊥β,則α∥β
③若m⊥α,n⊥β,m⊥n,則α⊥β
④若m∥α,n∥βm∥n,則α∥β
其中正確的命題是( 。

查看答案和解析>>

同步練習冊答案