如圖所示,四棱錐P-ABCD中,PD⊥平面ABCD,PA與平面ABCD所成的角為60°,在四邊形ABCD中,∠D=∠DAB=90°,AB=4,CD=1,AD=2.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,并寫出點(diǎn)B,P的坐標(biāo);
(2)求異面直線PA與BC所成角的余弦值;
(3)若PB的中點(diǎn)為M,求證:平面AMC⊥平面PBC.
(1)如圖所示,以D為原點(diǎn),射線DA,DC,DP分別為x,y,z軸的正方向,建立空間直角坐標(biāo)系D-xyz.
∵∠D=∠DAB=90°,AB=4,CD=1,AD=2,
∴A(2,0,0),C(0,1,0),B(2,4,0),
由PD⊥平面ABCD,得∠PAD為PA與平面ABCD所成的角,
∴∠PAD=60°.
在Rt△PAD中,由AD=2,得PD=2,
∴P(0,0,2).
(2)∵=(2,0,-2),
=(-2,-3,0),
∴cos<,>=
=-,
所以PA與BC所成角的余弦值為
(3)證明:∵M(jìn)為PB的中點(diǎn),
∴點(diǎn)M的坐標(biāo)為(1,2,),
∴=(-1,2,),=(1,1,),
=(2,4,-2),
∵·=(-1)×2+2×4+×(-2)=0,
·=1×2+1×4+×(-2)=0,
∴⊥,⊥,∴PB⊥平面AMC
∵PB?平面PBC
∴平面AMC⊥平面PBC .  
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,已知四棱錐中,側(cè)棱平面,底面是平行四邊形,,,分別是的中點(diǎn).
(1)求證:平面
(2)當(dāng)平面與底面所成二面角為時(shí),求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖, PA⊥平面ABCD,四邊形ABCD是矩形,點(diǎn)E在邊AB上,F(xiàn)為PD的中點(diǎn),AF∥平面PCE,二面角P-CD-B為450,AD=2,CD=3.

(1)試確定E點(diǎn)位置; (2)求直線AF到平面PCE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如右圖所示,ABCD-A1B1C1D1是正四棱柱,側(cè)棱長(zhǎng)為1,底面邊長(zhǎng)為2,E是棱BC的中點(diǎn).

(1)求證:BD1∥平面C1DE;
(2)求三棱錐D-D1BC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在直三棱柱ABC—ABC中,分別為棱AC、AB上的動(dòng)點(diǎn)(不包括端點(diǎn)),若則線段DF長(zhǎng)度的取值范圍為
A.    B.   C.     D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱錐P-ABC中,已知PA^平面ABC, PA=3,PB=PC=BC="6," 求二面角P-BC-A的正弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面正方形,其他四個(gè)側(cè)面都是等邊三角形,的交點(diǎn)為,為側(cè)棱上一點(diǎn).

(Ⅰ)當(dāng)為側(cè)棱的中點(diǎn)時(shí),求證:∥平面;
(Ⅱ)求證:平面平面;
(Ⅲ)(理科)當(dāng)二面角的大小時(shí),試判斷點(diǎn)上的位置,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

a、b是兩條異面直線,A是不在a、b上的點(diǎn),則下列結(jié)論成立的是(  )
A.過A有且只有一個(gè)平面平行于a、b
B.過A至少有一個(gè)平面平行于a、b
C.過A有無數(shù)個(gè)平面平行于a、b
D.過A且平行a、b的平面可能不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

將正方形ABCD沿對(duì)角線BD折成一個(gè)120°的二面角,點(diǎn)C到達(dá)點(diǎn)C1,這時(shí)異面直線AD與BC1所成的角的余弦值是
(  )
A.                                       B.
C.                                       D.

查看答案和解析>>

同步練習(xí)冊(cè)答案