化簡:sin6α+cos6α+3sin2α•cos2α=
 
考點:同角三角函數(shù)基本關系的運用
專題:三角函數(shù)的求值
分析:原式前兩項利用立方和公式變形,利用同角三角函數(shù)間基本關系化簡,再利用完全平方公式及同角三角函數(shù)間的基本關系計算即可得到結果.
解答: 解:原式=(sin2α+cos2α)(sin4α+cos4α-sin2αcos2α)+3sin2αcos2α
=sin4α+cos4α-sin2αcos2α+3sin2αcos2α
=sin4α+cos4α+2sin2αcos2α
=(sin2α+cos2α)2
=1.
故答案為:1.
點評:此題考查了同角三角函數(shù)基本關系的運用,熟練掌握基本關系是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

關于函數(shù)f(x)=sin2x-(
2
3
|x|+
1
2
有如下四個結論:①f(x)的圖象關于y軸對稱;②f(x)的值域是(-
1
2
3
2
);③當x∈(0,
π
2
)時,f(x)為增函數(shù);④f(x)在R上有且只有一個零點,則正確結論的個數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設M={平面內(nèi)的點(a,b)},N={f(x)|f(x)=acos2x+bsin2x},給出M到N的映射f:(a,b)→f(x)=acos2x+bsin2x,則點(1,
3
)的象f(x)的最小正周期為( 。
A、
π
2
B、
π
4
C、π
D、2π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
|2x-a|
-
(x+2)(x+b)
x2
為偶函數(shù),則a=
 
,b=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果tan
α
2
=
1
3
,那么cosα的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U=R,A={x|x≤0},B={x|x>-1},則集合∁U(A∩B)=( 。
A、{x|-1<x≤0}
B、{x|-1≤x≤0}
C、{x|x≤-1或x≥0}
D、{x|x≤-1或x>0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=1-i(其中i為虛數(shù)單位),則
2i
z
等于( 。
A、1-iB、1+i
C、-1-iD、-1+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題:?x∈R,x2+1≠0是
 
命題.( 填:真、假 )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,PD⊥底面ABCD,且PD=a,PA=PC=
2
a
,
(1)求證:點A在PA為直徑的圓上;
(2)若在這個四棱錐內(nèi)放一球,求此球的最大半徑.

查看答案和解析>>

同步練習冊答案