(2012•惠州模擬)(坐標系與參數(shù)方程選做題)在極坐標系中,點P(2,
2
)
到直線l:3ρcosθ-4ρsinθ=3的距離為
1
1
分析:化點、直線的極坐標為直角坐標,利用點到直線的距離公式,我們可以得到結(jié)論.
解答:解:點P(2,
2
)
的直角坐標為(0,-2)
直線l:3ρcosθ-4ρsinθ=3的直角坐標方程為:3x-4y-3=0
利用點到直線的距離公式可得:d=
|8-3|
5
=1
故答案為:1.
點評:極坐標中的問題,通常是轉(zhuǎn)化為直角坐標,進行解決,掌握轉(zhuǎn)化公式是解決這類問題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•惠州模擬)已知實數(shù)4,m,9構(gòu)成一個等比數(shù)列,則圓錐曲線
x2
m
+y2=1
的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•惠州模擬)已知橢圓C:  
x2
a2
+
y2
b2
=1  (a>b>0)
的離心率為
6
3
,且經(jīng)過點(
3
2
1
2
)

(Ⅰ)求橢圓C的方程;
(Ⅱ)過點P(0,2)的直線交橢圓C于A,B兩點,求△AOB(O為原點)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•惠州模擬)如圖,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中點.
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE;
(3)求平面BCE與平面ACD所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•惠州模擬)如圖,在底面是矩形的四棱錐P-ABCD中,PA⊥平面ABCD,PA=AB=2,BC=2,E是PD的中點.
(1)求證:平面PDC⊥平面PAD;
(2)求二面角E-AC-D所成平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•惠州模擬)計算:
1
-1
1-x2
dx
=
π
2
π
2

查看答案和解析>>

同步練習冊答案