已知Rt△ABC中,∠B=90°,E、F分別是邊AB、AC的中點(diǎn),△AEF和梯形EBCF各繞直線BC旋轉(zhuǎn)一周,所得旋轉(zhuǎn)體的體積分別記為V1和V2,V1和V2哪個(gè)大?
解:如圖,設(shè)BE=DF=r,BC=h,則AB=2r



所以。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知Rt△ABC中,∠BAC=90°,AD⊥BC,垂足為D,DF⊥AC,垂足為F,DE⊥AB,垂足為E.
求證:(Ⅰ)AB•AC=AD•BC;
(Ⅱ)AD3=BC•BE•CF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知Rt△ABC 中,AB=AC=
2
,AD是斜邊BC 上的高,以 AD為折痕,將△ABD折起,使∠BDC為直角.
(1)求證:平面ABD⊥平面BDC;
(2)求證:∠BAC=60°
(3)求點(diǎn)D到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Rt△ABC中,∠ABC=90°,AB=4,BC=2,D,E分別是AB,AC的中點(diǎn),將△ADE沿著DE翻折成△A1DE,使得平面A1DE⊥平面DECB,F(xiàn)是A1B上一點(diǎn)且A1E∥平面FDC.
(1)求
A1FFB

(2)求三棱錐D-A1CF的體積.
(3)求A1B與平面FDC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1-4-6,已知Rt△ABC中,∠ACB =90°,CDABDDEACE,DFBCF.求證:AE·BF·AB=CD3.

圖1-4-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省成都七中高二(下)入學(xué)數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知Rt△ABC中,∠ABC=90°,AB=4,BC=2,D,E分別是AB,AC的中點(diǎn),將△ADE沿著DE翻折成△A1DE,使得平面A1DE⊥平面DECB,F(xiàn)是A1B上一點(diǎn)且A1E∥平面FDC.
(1)求
(2)求三棱錐D-A1CF的體積.
(3)求A1B與平面FDC所成角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案