【題目】某公司對新研發(fā)的一種產品進行試銷,得到如下數(shù)據(jù)及散點圖:

其中, , .

(1)根據(jù)散點圖判斷, 哪一對具有較強的線性相關性(給出判斷即可,不必說明理由)?

(2)根據(jù)(1)的判斷結果及數(shù)據(jù),建立關于的回歸方程(運算過程及回歸方程中的系數(shù)均保留兩位有效數(shù)字).

(3)定價為150元/ 時,天銷售額的預報值為多少元?

附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計分別為

【答案】(1)有較強的線性相關性;(2);(3)150元.

【解析】試題分析】(1)依據(jù)題設中提供的散點圖的點的位置可以推測有較強的線性相關性;(2)先借助題設條件中的數(shù)表數(shù)據(jù)計算出,再求出,,進而求出,最后借助,求得關于的回歸方程為;(3)依據(jù)天銷售額解析式代入可得元,從而求出當定價為150元/ 時,天銷售額的預報值為150元.

解:(1)解:由散點圖知, 有較強的線性相關性.

(2)∵,

,

,又∵,∴關于的回歸方程為.

(3)天銷售額.

時,

∴當定價為150元/ 時,天銷售額的預報值為150元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓)的離心率為,短軸的一個端點為.過橢圓左頂點的直線與橢圓的另一交點為.

(1)求橢圓的方程;

(2)若與直線交于點,求的值;

(3)若,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,已知,點、分別在、上,且,將四邊形沿折起,使點在平面上的射影在直線上.

(I)求證: ;

(II)求點到平面的距離;

(III)求直線與平面所成的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=m-|x-1|-|x-2|,m∈R,且f(x+1)≥0的解集為[0,1].

(1)求m的值;

(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求證:ax+by+cz≤1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果方程cos2x-sinx+a=0在(0,]上有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)①f(x)=4x+-5,②f(x)=|log2 x|-(x,③f(x)=cos(x+2)-cosx,判斷如下兩個命題的真假:

命題甲:f(x)在區(qū)間(1,2)上是增函數(shù);

命題乙:f(x)在區(qū)間(0,+∞)上恰有兩個零點x1,x2,且x1x2<1.

能使命題甲、乙均為真的函數(shù)的序號是_____________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC中,內角A,B,C所對的邊分別為a,b,c,且滿足asinA-csinC=b(sinA-sinB).

(Ⅰ)求角C的大;

(Ⅱ)若邊長c=4,求△ABC的周長最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=elnx,g(x)=f(x)-(x+1).(e=2.718……)

(1)求函數(shù)g(x)的極大值;

(2)求證:1++…+>ln(n+1)(n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,菱形中,相交于點,平面,.

(1)求證:平面;

(2)當直線與平面所成角的大小為時,求的長度.

查看答案和解析>>

同步練習冊答案