分析 設拋物線y2=2px(p>0)的準線為l,分別過點A,B作AM⊥l,BN⊥l,垂足為M,N.過點B作BC⊥AM交于點C.由拋物線的定義可得:|AM|=|AF|,|BN|=|BF|.由于AM∥x軸,∠BAC=∠AFx=60°.在Rt△ABC中,|AC|=$\frac{1}{2}$|AB|,化簡即可得出.
解答 解:斜率為$\sqrt{3}$的直線傾斜角為60°.
設拋物線y2=2px(p>0)的準線為l:x=-$\frac{p}{2}$.
如圖所示,分別過點A,B作AM⊥l,BN⊥l,垂足為M,N.
過點B作BC⊥AM交于點C.
則|AM|=|AF|,|BN|=|BF|.
∵AM∥x軸,
∴∠BAC=∠AFx=60°.
在Rt△ABC中,|AC|=$\frac{1}{2}$|AB|
又|AM|-|BN|=|AC|,
∴|AF|-|BF|=$\frac{1}{2}$(|AF|+|BF|),
化為|AF|=3|BF|,則$\frac{{|{AF}|}}{{|{BF}|}}$=3.
故答案為:3.
點評 本題考查了拋物線的定義、含60°角的直角三角形的性質、平行線的性質,考查了輔助線的作法,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $arcsin\frac{{\sqrt{6}}}{3}$ | C. | $\frac{π}{6}$ | D. | $arcsin\frac{{2\sqrt{39}}}{13}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-4,1) | B. | (-1,1) | C. | (-∞,-4)∪(1,+∞) | D. | (-4,-1)∪(-1,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若命題P:?x0∈R,x02-x0+1<0,則¬P:?x∉R,x2-x+1≥0 | |
B. | 命題“若圓C:(x-m+1)2+(y-m)2=1與兩坐標軸都有公共點,則實數(shù)m∈[0,1]”的逆否命題為真命題 | |
C. | 已知相關變量(x,y)滿足回歸方程$\widehat{y}$=2-3x,若變量x增加一個單位,則y平均增加3個單位 | |
D. | 已知隨機變量X~N(2,σ2),若P(X<a)=0.32,則P(X>4-a)=0.68 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7}{3}$-cos1 | B. | $\frac{10}{3}$-cos1 | C. | $\frac{7}{3}$+cos1 | D. | $\frac{10}{3}$+cos1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com