【題目】已知定義在R上的奇函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=x2﹣3x.則關(guān)于x的方程f(x)=x+3的解集為 .
【答案】{2+ ,﹣1,﹣3}
【解析】解:若x<0,則﹣x>0,
∵定義在R上的奇函數(shù)f(x),當(dāng)x≥0時(shí),f(x)=x2﹣3x.
∴當(dāng)x<0時(shí),f(﹣x)=x2+3x=﹣f(x).
則當(dāng)x<0時(shí),f(x)=﹣x2﹣3x.
若x≥0,由f(x)=x+3得x2﹣3x=x+3,
則x2﹣4x﹣3=0,則x= = =2± ,
∵x≥0,∴x=2+ ,
若x<0,由f(x)=x+3得﹣x2﹣3x=x+3,
則x2+4x+3=0,則x=﹣1或x=﹣3,
綜上方程f(x)=x+3的解集為{2+ ,﹣1,﹣3};
所以答案是:{2+ ,﹣1,﹣3}
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)奇偶性的性質(zhì)(在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax3+cx(a≠0,a∈R,c∈R),當(dāng)x=1時(shí),f(x)取得極值﹣2.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)區(qū)間和極大值;
(3)若對(duì)任意x1、x2∈[﹣1,1],不等式|f(x1)﹣f(x2)|≤t恒成立,求實(shí)數(shù)t的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若在區(qū)間上有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017重慶二診】已知函數(shù),設(shè)關(guān)于的方程有個(gè)不同的實(shí)數(shù)解,則的所有可能的值為( )
A. 3 B. 1或3 C. 4或6 D. 3或4或6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)一批產(chǎn)品的長度(單位:毫米)進(jìn)行抽樣檢測,樣本容量為400,右圖為檢測結(jié)果的頻率分布直方圖,根據(jù)產(chǎn)品標(biāo)準(zhǔn),單件產(chǎn)品長度在區(qū)間[25,30)的為一等品,在區(qū)間[20,25)和[30,35)的為二等品,其余均為三等品,則樣本中三等品的件數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017湖南婁底二!磕撤N產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等級(jí)如下表:
質(zhì)量指標(biāo)值 | |||
等級(jí) | 三等品 | 二等品 | 一等品 |
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:
(Ⅰ)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品92%”的規(guī)定?
(Ⅱ)在樣本中,按產(chǎn)品等級(jí)用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(Ⅲ)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動(dòng),活動(dòng)后在抽樣檢測,產(chǎn)品質(zhì)量指標(biāo)值近似滿足,則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,圓C的方程為ρ=2acosθ(a≠0),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系,設(shè)直線l的參數(shù)方程為 (t為參數(shù)).
(1)求圓C的標(biāo)準(zhǔn)方程和直線l的普通方程;
(2)若直線l與圓C恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知bcos2 +acos2 = c.
(Ⅰ)求證:a,c,b成等差數(shù)列;
(Ⅱ)若C= ,△ABC的面積為2 ,求c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C的兩個(gè)焦點(diǎn)坐標(biāo)分別是F1(﹣ ,0)、F2( ,0),并且經(jīng)過點(diǎn)P( ,﹣ ).
(1)求橢圓C的方程;
(2)若直線l與圓O:x2+y2=1相切,并與橢圓C交于不同的兩點(diǎn)A、B.當(dāng) =λ,且滿足 ≤λ≤ 時(shí),求△AOB面積S的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com