用誘導(dǎo)公式求下列三角函數(shù)值(可用計(jì)算器)
(1)cos
65
6
π
;
(2)sin(-
31
4
π
);
(3)cos(-1182°13′).
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:(1)、(2)直接利用誘導(dǎo)公式以及特殊角的三角函數(shù)化簡(jiǎn)求值即可.
(3)利用誘導(dǎo)公式化簡(jiǎn),然后利用計(jì)算器求解即可.
解答: 解:(1)cos
65
6
π
=cos
6
=-cos
π
6
=-
3
2

(2)sin(-
31
4
π
)=sin(-
π
4
)=-
2
2

(3)cos(-1182°13′)=cos102°18′=-0.1969.
點(diǎn)評(píng):本題考查誘導(dǎo)公式的應(yīng)用,三角函數(shù)的化簡(jiǎn)求值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

把一顆骰子投擲兩次,第一次出現(xiàn)的點(diǎn)數(shù)記為m,第二次出現(xiàn)的點(diǎn)數(shù)記為n,則3m≠2n的概率為( 。
A、
2
3
B、
3
4
C、
1
5
D、
17
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程為
x=a-2•t
y=-4•t   
(t為參數(shù)),圓C的參數(shù)方程為
x=4•cosθ
y=4•sinθ
(θ為參數(shù)).若直線l與圓C有公共點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足,對(duì)于任意α、β∈R,總有f(α+β)-f(α)-f(β)=2013,則下列說法正確的是( 。
A、y=f(x)-2013是偶函數(shù)
B、y=f(x)+2013是偶函數(shù)
C、y=f(x)-2013是奇函數(shù)
D、y=f(x)+2013是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

S={直線l|
sinθ
m
x+
cosθ
n
y=1,m,n為正常數(shù),θ∈[0,2π)},給出下列結(jié)論:
①當(dāng)θ=
π
4
時(shí),S中直線的斜率為
n
m
;
②S中所有直線均經(jīng)過同一個(gè)定點(diǎn);
③當(dāng)m=n時(shí),存在某個(gè)定點(diǎn),該定點(diǎn)到S中的所有直線的距離相等;
④當(dāng)m>n時(shí),S中的兩條平行線間的距離的最小值為2n;
⑤S中的所有直線可覆蓋整個(gè)直角坐標(biāo)平面.
其中錯(cuò)誤的結(jié)論是
 
.(寫出所有錯(cuò)誤結(jié)論的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,數(shù)表滿足:
(1)第n行首尾兩數(shù)均為n;
(2)表中遞推關(guān)系類似楊輝三角,記第n(n>1)行第2個(gè)數(shù)為f(n).根據(jù)表中上下兩行數(shù)據(jù)關(guān)系,可以將f(n)用f(n-1)表示,得其遞推公式,f(n)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),f(1)=0,當(dāng)x>0時(shí),有xf′(x)-f(x)>0成立,則不等式f(x)>0的解集是( 。
A、(1,+∞)
B、(-1,0)
C、(-1,0)∪(1,+∞)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(1)=0,則不等式
f(x)-f(-x)
x
<0的解集為(  )
A、(-1,0)∪(1,+∞)
B、(-∞,-1)∪(0,1)
C、(-1,0)∪(0,1)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某個(gè)幾何體的三視圖如圖(主視圖中的弧線是半圓),根據(jù)圖中標(biāo)出的尺寸,可得這個(gè)幾何體的體積是(單位:cm3)( 。
A、πB、2πC、4πD、8π

查看答案和解析>>

同步練習(xí)冊(cè)答案