【題目】三條直線(xiàn)3x+2y+6=0,2x-3m2y+18=0和2mx-3y+12=0圍成直角三角形,求實(shí)數(shù)m的值.
【答案】(1)或或m=
【解析】
直線(xiàn)2mx-3y+12=0過(guò)定點(diǎn)A(0,4),若三條直線(xiàn)能?chē)芍苯侨切危瑒t根據(jù)直線(xiàn)垂直與斜率之間的關(guān)系即可得到結(jié)論.
(1)當(dāng)直線(xiàn)3x+2y+6=0與直線(xiàn)2x-3m2y+18=0垂直時(shí),有6-6m2=0,∴m=1或m=-1.
若m=1,直線(xiàn)2mx-3y+12=0也與直線(xiàn)3x+2y+6=0垂直,因而不能構(gòu)成三角形,故m=1應(yīng)舍去.
∴m=-1.
(2)當(dāng)直線(xiàn)3x+2y+6=0與直線(xiàn)2mx-3y+12=0垂直時(shí),有6m-6=0,m=1(舍).
(3)當(dāng)直線(xiàn)2x-3m2y+18=0與直線(xiàn)2mx-3y+12=0垂直時(shí),有4m+9m2=0.
∴m=0或m= .
經(jīng)檢驗(yàn),這兩種情形均滿(mǎn)足題意.
綜上所述,m=-1或m=0或m=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校團(tuán)委組織了“文明出行,愛(ài)我中華”的知識(shí)競(jìng)賽,從參加考試的學(xué)生中抽出60名學(xué)生,將其成績(jī)(單位:分)整理后,得到如下頻率分布直方圖(其中分組區(qū)間為,,…,).
(1)求成績(jī)?cè)?/span>的頻率,并補(bǔ)全此頻率分布直方圖;
(2)求這次考試平均分的估計(jì)值;
(3)若從成績(jī)?cè)?/span>和的學(xué)生中任選兩人,求他們的成績(jī)?cè)谕环纸M區(qū)間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等比數(shù)列{an}中,a1=1,且a2是a1與a3﹣1的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿(mǎn)足 .求數(shù)列{bn}的前n項(xiàng)和 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sinωxcosωx+ cos2ωx﹣ (ω>0),直線(xiàn)x=x1 , x=x2是y=f(x)圖象的任意兩條對(duì)稱(chēng)軸,且|x1﹣x2|的最小值為 .
(1)求f(x)的表達(dá)式;
(2)將函數(shù)f(x)的圖象向右平移 個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,若關(guān)于x的方程g(x)+k=0,在區(qū)間 上有且只有一個(gè)實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=sinxcosx﹣cos2(x+ ).
(1)求f(x)的單調(diào)區(qū)間;
(2)在銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若f( )=0,a=1,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是等腰梯形, , , ,在梯形中, ,且, 平面.
(1)求證:面面;
(2)若二面角的大小為,求幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 是[1,∞]上的增函數(shù).當(dāng)實(shí)數(shù)m取最大值時(shí),若存在點(diǎn)Q,使得過(guò)Q的直線(xiàn)與曲線(xiàn)y=g(x)圍成兩個(gè)封閉圖形,且這兩個(gè)封閉圖形的面積總相等,則點(diǎn)Q的坐標(biāo)為( )
A.(0,﹣3)
B.(0,3)
C.(0,﹣2)
D.(0,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為保護(hù)河上古橋OA,規(guī)劃建一座新橋BC,同時(shí)設(shè)立一個(gè)圓形保護(hù)區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護(hù)區(qū)的邊界為圓心M在線(xiàn)段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點(diǎn)的距離均不少于80 m.經(jīng)測(cè)量,點(diǎn)A位于點(diǎn)O正北方向60 m處,點(diǎn)C位于點(diǎn)O正東方向170 m處(OC為河岸),tan∠BCO=.
(1)求新橋BC的長(zhǎng);
(2)當(dāng)OM多長(zhǎng)時(shí),圓形保護(hù)區(qū)的面積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=(x-a)(x-b)(其中a>b),若f(x)的圖象如圖所示,則函數(shù)g(x)=ax+b的圖象大致為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com