(12分)已知2≤(x2,求函數(shù)y=2x-2x的值域.
解:∵2≤22x2,∴x2+x≤4-2x,即x2+3x-4≤0,得-4≤x≤1.
又∵y=2x-2x是[-4,1]上的增函數(shù),∴24-24≤y≤2-21.
故所求函數(shù)y的值域是[-].
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)上的奇函數(shù),當(dāng)時(shí),,
(1)判斷并證明上的單調(diào)性;
(2)求的值域; 
(3)求不等式的解集。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果奇函數(shù)在區(qū)間上是增函數(shù),且最小值為,那么在區(qū)間上是
A.增函數(shù)且最小值為B.增函數(shù)且最大值為
C.減函數(shù)且最小值為D.減函數(shù)且最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù)
(I)求函數(shù)上的最小值;
(II)對(duì)一切恒成立,求實(shí)數(shù)的取值范圍;
(III)求證:對(duì)一切,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù)上是增函數(shù),,若,則x的取值范圍是(    )
A.(0,10)B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下列說(shuō)法:①若(其中)是偶函數(shù), 則實(shí)數(shù);
既是奇函數(shù)又是偶函數(shù);
③已知是定義在上的奇函數(shù),若當(dāng)時(shí), ,則當(dāng)時(shí), ;
④已知是定義在R上的不恒為零的函數(shù), 且對(duì)任意的都滿足, 則是奇函數(shù).       
其中所有正確說(shuō)法的序號(hào)是   ▲   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題12分)設(shè)是定義在上的函數(shù),且對(duì)任意,當(dāng)時(shí),都有
(1)當(dāng)時(shí),比較的大小;
(2)解不等式;
(3)設(shè),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)已知函數(shù),
(1)判斷函數(shù)的單調(diào)性,并用定義加以證明;(2)求函數(shù)的最大值和最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

關(guān)于函數(shù),有下列命題:
①其圖象關(guān)于軸對(duì)稱;
②當(dāng)時(shí),是增函數(shù);當(dāng)時(shí),是減函數(shù);
的最小值是;
在區(qū)間(-1,0)、(2,+∞)上是增函數(shù);
無(wú)最大值,也無(wú)最小值.
其中所有正確結(jié)論的序號(hào)是                           

查看答案和解析>>

同步練習(xí)冊(cè)答案