在△ABC中, 已知a=5,b=12,c=13.最大內(nèi)角為      度。

 

【答案】

90.

【解析】

試題分析:cosC== =0,C=900.

考點:本題主要考查余弦定理。

點評:三角形中已知邊角,求其它邊角問題,往往要利用正弦定理或余弦定理。本題已知三邊長求角,利用余弦定理。

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知A=30°,B=120°,b=12,求a,c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知b=
2
,c=1,B=45°,求a,A,C.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知高AN和BM所在直線方程分別為x+5y-3=0和x+y-1=0,邊AB所在直線方程x+3y-1=0,求直線BC,CA及AB邊上的高所在直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知lgsinA-lgcosB-lgsinC=lg2,則三角形一定是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知b=1,c=3,A=120°,則a=
 

查看答案和解析>>

同步練習冊答案