12、在(1+x)3+(1+x)4+…+(1+x)10的展開式中,含x2項的系數(shù)為
164
分析:利用二項展開式的通項公式求出含x2項的系數(shù),在代數(shù)式上加C33,湊出用組合數(shù)性質(zhì)的條件,利用組合數(shù)性質(zhì)化簡.
解答:解:(1+x)3+(1+x)4+…+(1+x)10的展開式中,含x2項的系數(shù)為
C32+C42+…+C102=C33+C32+C42+…+C102-1
=C43+C42+…+C102-1
=C113-1
=164
故答案為164
點評:本題考查二項展開式的通項公式;組合數(shù)的性質(zhì).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

9、在(1+x)3+(1+x)4…+(1+x)7的展開式中,含x項的系數(shù)是
25
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在(1+x)3+(1+x)4+…+(1+x)2005的展開式中,x3的系數(shù)等于( 。
A、C20054B、C20064C、C20053D、C20063

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在(1+x)3+(1+x)4+…+(1+x)8的展開式中,含x2項的系數(shù)是
55
55
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源:江西省臨川二中、新余四中2012屆高三第一次聯(lián)考數(shù)學文科試題 題型:022

在計算“1×2+2×3+…+n(n+1)”時,某同學學到了如下一種方法:先改寫第k項:k(k+1)=[k(k+1)(x+2)-(k-1)k(k+1)],由此得

1×2=(1×2×3-0×1×2)

2×3=(2×3×4-1×2×3)

n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]

相加,得

1×2+2×3+…+n(n+1)=n(n+1)(n+2)

類比上述方法,請你計算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其結(jié)果為________.

查看答案和解析>>

同步練習冊答案