【題目】已知函數(shù).
(1)曲線在點(diǎn)處的切線垂直于直線:,求的值;
(2)若函數(shù)有兩個(gè)不同的零點(diǎn),求的范圍.
【答案】(1)或.(2)或.
【解析】試題分析:(1)求得,根據(jù)在點(diǎn)處垂直于直線 ,得到
,即可求解實(shí)數(shù)的值;
(2)求得函數(shù)的導(dǎo)函數(shù),可分、和三種情況討論,由函數(shù)有兩個(gè)不同的零點(diǎn),列出不等式,即可求解的取值范圍.
試題解析:
(1),
因?yàn)?/span>在點(diǎn)處垂直于直線 ,
所以,,解得或.
(2)函數(shù)的定義域?yàn)?/span>,.
①當(dāng)時(shí), ,無(wú)零點(diǎn);
②當(dāng)時(shí),,得.
當(dāng)時(shí),,函數(shù)單調(diào)遞減;
當(dāng)時(shí),,函數(shù)單調(diào)遞增,
∴.
因?yàn)?/span>,
且當(dāng)時(shí),,當(dāng)→時(shí),,,
∴若函數(shù)有兩個(gè)不同的零點(diǎn),需,即,;
③當(dāng)時(shí),令,得.
當(dāng)時(shí),,函數(shù)單調(diào)遞減;
當(dāng)時(shí),,函數(shù)單調(diào)遞增,
∴.
當(dāng)→和當(dāng)→,均有,
若函數(shù)有兩個(gè)不同的零點(diǎn),需時(shí),即,.
綜上,函數(shù)有兩個(gè)不同的零點(diǎn),的取值范圍是或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老年人是否需要志愿者提供幫助,用簡(jiǎn)單隨機(jī)抽樣的方法從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
附:的觀測(cè)值
(1)估計(jì)該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;
(2)在犯錯(cuò)誤的概率不超過0.01的前提下是否可認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(3)根據(jù)(2)的結(jié)論,能否提出更好的調(diào)查方法來估計(jì)該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,其離心率,點(diǎn)P為橢圓上的一個(gè)動(dòng)點(diǎn),面積的最大值為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若A,B,C,D是橢圓上不重合的四個(gè)點(diǎn),AC與BD相交于點(diǎn),,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查高中生性別與愛好某項(xiàng)運(yùn)動(dòng)是否有關(guān),通過隨機(jī)調(diào)查200名高中生是否愛好某項(xiàng)運(yùn)動(dòng),利用列聯(lián)表,由計(jì)算可得,參照下表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5,024 | 6.635 | 7.879 | 10.828 |
得到的正確結(jié)論是( )
A. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
B. 有99%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
C. 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D. 在犯錯(cuò)誤的概率不超過0.5%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是的反函數(shù),定義:若對(duì)于給定實(shí)數(shù),函數(shù)與)互成反函數(shù),則稱滿足“和性質(zhì)”,若函數(shù)與互為反函數(shù),則稱滿足積性質(zhì)
(1)判斷函數(shù)是否滿足“1和性質(zhì)”,并說明理由;
(2)求所有滿足“2和性質(zhì)”的一次函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,判斷函數(shù)的奇偶性,并加以證明;
(2)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(3)若存在實(shí)數(shù)使得關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從高三學(xué)生中抽取名學(xué)生參加數(shù)學(xué)競(jìng)賽,成績(jī)(單位:分)的分組及各數(shù)據(jù)繪制的頻率分布直方圖如圖所示,已知成績(jī)的范圍是區(qū)間,且成績(jī)?cè)趨^(qū)間的學(xué)生人數(shù)是人.
(1)求,的值;
(2)若從數(shù)學(xué)成績(jī)(單位:分)在的學(xué)生中隨機(jī)選取人進(jìn)行成績(jī)分析.
①列出所有可能的抽取結(jié)果;
②設(shè)選取的人中,成績(jī)都在內(nèi)為事件,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是定義在[0,2]上的增函數(shù),且圖像是連續(xù)不斷的曲線,若f(0)=M,f(2)=N(M>0,N>0),那么下列四個(gè)命題中是真命題的有( )
A.必存在x∈[0,2],使得f(x)B.必存在x∈[0,2],使得f(x)
C.必存在x∈[0,2],使得f(x)D.必存在x∈[0,2],使得f(x)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com