4.二次函數(shù)f(x)=x2-2x-3在[-2,1]上有幾個零點( 。
A.2B.3C.1D.0

分析 求出函數(shù)的零點,然后判斷即可.

解答 解:二次函數(shù)f(x)=x2-2x-3,可得x2-2x-3=0時,x=-1,或x=3,
因為-1∈[-2,1],3∉[-2,1],
所以二次函數(shù)f(x)=x2-2x-3在[-2,1]上有1個零點.
故選:C.

點評 本題考查函數(shù)的零點與方程根的關(guān)系,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知四棱錐S-ABCD的底面是邊長為2的正方形,SD⊥平面ABCD,且SD=AB,則四棱錐S-ABCD的外接球的表面積為(  )
A.144πB.64πC.12πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若一個橢圓的長軸長是短軸長的3倍,焦距為8,則這個橢圓的標準方程為$\frac{{x}^{2}}{18}+\frac{{y}^{2}}{2}=1$或$\frac{{y}^{2}}{18}+\frac{{x}^{2}}{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在數(shù)列{an}中,an>0,a1=$\frac{1}{2}$,如果an+1是1與$\frac{2{a}_{n}{a}_{n+1}+1}{4-{{a}_{n}}^{2}}$的等比中項,那么a1+$\frac{{a}_{2}}{{2}^{2}}$+$\frac{{a}_{3}}{{3}^{2}}$+$\frac{{a}_{4}}{{4}^{2}}$+…+$\frac{{a}_{2016}}{201{6}^{2}}$的值$\frac{2016}{2017}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若定義在R上的函數(shù)f(x) 滿足f(0)=-1,其導(dǎo)函數(shù)f′(x) 滿足f′(x)<k<1,則f($\frac{1}{k-1}$)與$\frac{1}{k-1}$的大小關(guān)系是f($\frac{1}{k-1}$)>$\frac{1}{k-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如果a>1,那么a+$\frac{{a}^{2}}{a-1}$的最小值是3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知a>1,設(shè)命題P:a(x-2)+1>0,命題Q:(x-1)2>a(x-2)+1.試求使得P、Q都是真命題的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知f(x)=2cos($\frac{π}{3}$x+φ)的一個對稱中心為(2,0),φ∈(0,π),則φ=$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={0,1},集合B滿足A∪B={0,1},則集合B的個數(shù)有( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

同步練習(xí)冊答案