寫出符合下列條件的曲線的標(biāo)準(zhǔn)方程
與雙曲線有共同的漸近線且過點(diǎn)A(2,-3)求雙曲線標(biāo)準(zhǔn)方程
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
若以連續(xù)拋擲兩次骰子分別得到的點(diǎn)數(shù)m、n作為點(diǎn)P的坐標(biāo),則點(diǎn)P落在圓x2+y2=16內(nèi)的概率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
某大學(xué)教學(xué)系共有本科生5 000人,其中一、二、三、四年級(jí)的人數(shù)比為4∶3∶2∶1, 要
用分層抽樣的方法從所有本科生中抽取一個(gè)容量為200的樣本,則應(yīng)抽取三年級(jí)的學(xué)生
人數(shù)為( ) A.80 B.60 C.40 D.20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知橢圓C:+y2=1,A、B是四條直線x=±2,y=±1所圍成的兩個(gè)頂點(diǎn).
(1)設(shè)P是橢圓C上任意一點(diǎn),若,求證:動(dòng)點(diǎn)Q(m,n)在定圓上運(yùn)動(dòng),并求出定圓的方程;
(2)若M、N是橢圓C上兩上動(dòng)點(diǎn),且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com