【題目】已知直線.C與直線相切于點A,且點A的縱坐標(biāo)為,圓心C在直線.

1)求直線之間的距離;

2)求圓C的標(biāo)準(zhǔn)方程;

3)若直線經(jīng)過點且與圓C交于兩點,當(dāng)△CPQ的面積最大時,求直線的方程.

【答案】1223

【解析】

1)由兩直線平等求得,然后由平行線間距離公式得距離.

2)求出點坐標(biāo),可得過垂直的直線方程,由此可得圓心坐標(biāo),得圓半徑,從而得圓方程;

3)利用時,面積最大.從而圓心到直線的距離為,從而求得直線方程.

解:(1)∵兩條線平行,

,

直線方程為,即,

2)∵

,∴,

設(shè)過Al2垂直的直線方程為,,

∴過Al2垂直的直線方程為

,∴圓心為(00),半徑為

∴圓C的標(biāo)準(zhǔn)方程為

3)∵,

∴當(dāng),即時,面積最大.此時,圓心到直線的距離為

顯然直線滿足題意,

當(dāng)直線斜率存在時,設(shè)方程為,即,

,解得,直線方程為,即.

∴直線的方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù)是區(qū)間上的減函數(shù).

(1)求的最大值;

(2)若上恒成立,求的取值范圍;

(3)討論關(guān)于的方程的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量(單位:)和年利潤(單位:千元)的影響,對近年的宣傳費,和年銷售量的數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值,表中

(Ⅰ)根據(jù)散點圖判斷,,哪一個宜作為年銷售量關(guān)于年宣傳費的回歸方程類型(給出判斷即可,不必說明理由);

(Ⅱ)根據(jù)(Ⅰ)的判斷結(jié)果及表中數(shù)據(jù),建立關(guān)于的回歸方程;

(Ⅲ)已知這種產(chǎn)品的年利潤,的關(guān)系為,根據(jù)(Ⅱ)的結(jié)果回答下列問題:

(1)當(dāng)年宣傳費時,年銷售量及年利潤的預(yù)報值時多少?

(2)當(dāng)年宣傳費為何值時,年利潤的預(yù)報值最大?

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廟會是我國古老的傳統(tǒng)民俗文化活動,又稱“廟市”或 “節(jié)場”.廟會大多在春節(jié)、元宵節(jié)等節(jié)日舉行.廟會上有豐富多彩的文化娛樂活動,如“砸金蛋”(游玩者每次砸碎一顆金蛋,如果有獎品,則“中獎”).今年春節(jié)期間,某校甲、乙、丙、丁四位同學(xué)相約來到某廟會,每人均獲得砸一顆金蛋的機會.游戲開始前,甲、乙、丙、丁四位同學(xué)對游戲中獎結(jié)果進(jìn)行了預(yù)測,預(yù)測結(jié)果如下:

甲說:“我或乙能中獎”; 乙說:“丁能中獎”;

丙說:“我或乙能中獎”; 丁說:“甲不能中獎”.

游戲結(jié)束后,這四位同學(xué)中只有一位同學(xué)中獎,且只有一位同學(xué)的預(yù)測結(jié)果是正確的,則中獎的同學(xué)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小王想進(jìn)行理財投資,根據(jù)長期收益率市場頂測,投資A類產(chǎn)品和B類產(chǎn)品的收益分別為(萬元),它們與投資額x(萬元)存在如下關(guān)系式:,小王準(zhǔn)備將200萬元資金投入AB兩類理財產(chǎn)品,公司要求每類產(chǎn)品的投資金額不能低于25萬元

1)若對B類產(chǎn)品的投資金額為x(萬元),求總收益y(萬元)關(guān)于x的函數(shù)關(guān)系式;

2)請你幫助小王預(yù)算如何分配投資資金,才能使總收益最大,并求出最大總收益.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】重慶市推行“共享吉利博瑞車”服務(wù),租用該車按行駛里程加用車時間收費,標(biāo)準(zhǔn)是“1元/公里0.2元/分鐘”.剛在重慶參加工作的小劉擬租用“共享吉利博瑞車”上下班,同單位的鄰居老李告訴他:“上下班往返總路程雖然只有10公里,但偶爾開車上下班總共也需花費大約1小時”,并將自己近50天的往返開車的花費時間情況統(tǒng)計如表:

將老李統(tǒng)計的各時間段頻率視為相應(yīng)概率,假定往返的路程不變,而且每次路上開車花費時間視為用車時間.

(1)試估計小劉每天平均支付的租車費用(每個時間段以中點時間計算);

(2)小劉認(rèn)為只要上下班開車總用時不超過45分鐘,租用“共享吉利博瑞車”為他該日的“最優(yōu)選擇”,小劉擬租用該車上下班2天,設(shè)其中有天為“最優(yōu)選擇”,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=|ax-2|+lnx(其中a為常數(shù))

1)若a=0,求函數(shù)gx=的極值;

2)求函數(shù)fx)的單調(diào)區(qū)間;

3)令Fx=fx-,當(dāng)a≥2時,判斷函數(shù)Fx)在(0,1]上零點的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 ,直線不過原點O且不平行于坐標(biāo)軸, 有兩

個交點A、B,線段AB的中點為M.

1)若,點K在橢圓上, 、分別為橢圓的兩個焦點,求的范圍;

2)證明:直線的斜率與的斜率的乘積為定值;

3)若過點,射線OM交于點P,四邊形能否為平行四邊形?

若能,求此時的斜率;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場在一部向下運行的手扶電梯終點的正上方豎直懸掛一幅廣告畫.如圖,該電梯的高AB為4米,它所占水平地面的長AC為8米.該廣告畫最高點E到地面的距離為10.5米,最低點D到地面的距離6.5米.假設(shè)某人的眼睛到腳底的距離MN為1.5米,他豎直站在此電梯上觀看DE的視角為θ

(1)設(shè)此人到直線EC的距離為x米,試用x表示點M到地面的距離;

(2)此人到直線EC的距離為多少米時,視角θ最大?

查看答案和解析>>

同步練習(xí)冊答案