分析 (1)利用矩形的性質(zhì)可得AB∥CD,因此∠DCA=∠CAB,可得∠EDC=∠DCA,即可證明AC∥DE.
(2)通過證明△ABF≌△DCE,BF=CE,及其BF∥CE,即可證明.
解答 (1)證明:∵四邊形ABCD是矩形,
∴AB∥CD,∴∠DCA=∠CAB,
∵∠EDC=∠CAB,∴∠EDC=∠DCA,
∴AC∥DE.
(2)解:四邊形BCEF是平行四邊形.以下給出證明:
∵BF⊥AC∴∠BFC=∠AFB=90°.
∵∠DEC=90,AC∥DE,∴∠ACE=180-∠DEC=90°.
∴∠ACE=∠BFC,∴BF∥CE.
∵AB=CD,∠EDC=∠CAB,∠DEC=∠AFB=90°.
∴△ABF≌△DCE (AAS),
∴BF=CE,
∴四邊形BCEF平行四邊形.
點評 本題考查了平行四邊形與矩形的判定與性質(zhì)定理、三角形全等的判定與性質(zhì)定理,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({\frac{16}{9},2})$ | B. | $({\frac{16}{9},+∞})∪({-∞,0})$ | C. | $({\frac{16}{9},2}]$ | D. | $({\frac{2}{3},2}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {y|y≥0} | B. | {x|x$>\frac{1}{2}$} | C. | {x|0$<x<\frac{1}{2}$} | D. | {y|y>0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(-1)>f($\frac{\sqrt{3}}{3}$) | B. | f($\sqrt{2}$)>f(-$\sqrt{2}$) | C. | f(4)>f(3) | D. | f(-$\sqrt{2}$)>f($\sqrt{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-4,1] | B. | (-4,1) | C. | [-4,-1) | D. | (-4,-1)∪(-1,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $-\frac{1}{3}$ | C. | $\frac{4}{3}$ | D. | $-\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x0與 g(x)=1 | B. | f(x)=|x|與$g(x)=\sqrt{x^2}$ | ||
C. | f(x)=x與 $g(x)=\frac{x^2}{x}$ | D. | $f(x)=\root{3}{x^3}$與 $g(x)={(\sqrt{x})^2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com