【題目】已知函數(shù)
(1)若曲線在點(diǎn)處的切線與直線垂直,求函數(shù)的極值;
(2)設(shè)函數(shù).當(dāng)=時(shí),若區(qū)間[1,e]上存在x0,使得,求實(shí)數(shù)的取值范圍.(為自然對數(shù)底數(shù))
【答案】(1)極小值為;(2)
【解析】試題分析:(1)求出函數(shù)的導(dǎo)數(shù),計(jì)算的值,求出,從而求出的單調(diào)區(qū)間,求出函數(shù)的極值即可;(2)令,根據(jù)函數(shù)的單調(diào)性求出的最小值,從而求出的范圍即可.
試題解析:(1)(),因?yàn)榍在點(diǎn)(1,f(1))處的切線與直線垂直,所以,即,解得.所以, ∴當(dāng)時(shí), , 在上單調(diào)遞減;當(dāng)時(shí), ,f(x)在(2,+∞)上單調(diào)遞增;∴當(dāng)x=2時(shí),f(x)取得極小值,∴f(x)極小值為ln2.
(2)令,則,欲使在區(qū)間上上存在,使得,只需在區(qū)間上的最小值小于零.令得, 或.當(dāng),即時(shí), 在上單調(diào)遞減,則的最小值為,∴,解得,∵,∴;當(dāng),即時(shí), 在上單調(diào)遞增,則的最小值為,∴,解得,∴;當(dāng),即時(shí), 在上單調(diào)遞減,在上單調(diào)遞增,則的最小值為,∵,∴,∴,此時(shí)不成立.綜上所述,實(shí)數(shù)m的取值范圍為
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)的圖象上存在兩個(gè)不同的點(diǎn)、,使得曲線在這兩點(diǎn)處的切線重合,稱函數(shù)具有性質(zhì).下列函數(shù)中具有性質(zhì)的有( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列事件A,B是獨(dú)立事件的是( )
A. 一枚硬幣擲兩次,A=“第一次為正面向上”,B=“第二次為反面向上”
B. 袋中有兩個(gè)白球和兩個(gè)黑球,不放回地摸兩球,A=“第一次摸到白球”,B=“第二次摸到白球”
C. 擲一枚骰子,A=“出現(xiàn)點(diǎn)數(shù)為奇數(shù)”,B=“出現(xiàn)點(diǎn)數(shù)為偶數(shù)”
D. A=“人能活到20歲”,B=“人能活到50歲”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)求曲線的直角坐標(biāo)方程;
(2)若兩條互相垂直的直線都經(jīng)過原點(diǎn)(兩條直線與坐標(biāo)軸都不重合)且與曲線分別交于點(diǎn)(異于原點(diǎn)),且,求這兩條直線的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知直線l過點(diǎn)P(2,2).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ﹣ρcos2θ﹣4cosθ=0.
(1)求C的直角坐標(biāo)方程;
(2)若l與C交于A,B兩點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列前項(xiàng)和為,對任意,點(diǎn)都在函數(shù)圖像上.
(1)求、、,并猜想數(shù)列的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明(1)的猜想;
(3)若數(shù)列滿足:,,且對任意的,都有、、成公比為的等比數(shù)列,、、成等差數(shù)列,設(shè),求數(shù)列的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若函數(shù)在上無零點(diǎn),求最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一家面包房根據(jù)以往某種面包的銷售記錄,繪制了日銷售量的頻率分布直方圖,如圖231所示.
圖231
將日銷售量落入各組的頻率視為概率,并假設(shè)每天的銷售量相互獨(dú)立.
(1)求在未來連續(xù)3天里,有連續(xù)2天的日銷售量都不低于100個(gè)且另1天的日銷售量低于50個(gè)的概率;
(2)用X表示在未來3天里日銷售量不低于100個(gè)的天數(shù),求隨機(jī)變量X的分布列,期望E(X)及方差D(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)選修4—4,坐標(biāo)系與參數(shù)方程
已知曲線,直線:(為參數(shù)).
(I)寫出曲線的參數(shù)方程,直線的普通方程;
(II)過曲線上任意一點(diǎn)作與夾角為的直線,交于點(diǎn),的最大值與最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com