已知是同一平面內(nèi)的三個(gè)向量,其中
(1)若,且,求:的坐標(biāo)
(2)若,且與垂直,求與的夾角
(1)或;(2).
解析試題分析:(1)設(shè),利用兩個(gè)已知條件,列出關(guān)于的方程組,解出即可;(2)由與垂直得,對(duì)此式進(jìn)行化簡(jiǎn),可求出,又的模易知,利用向量數(shù)量積的定義則可求出與的夾角.
試題解析:設(shè)由得
所以, 7分
(2)∵與垂直,∴
即;∴
∴,∵∴ 14分
考點(diǎn):向量的數(shù)量積、向量的模、向量的平行與垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
為坐標(biāo)原點(diǎn),已知向量分別對(duì)應(yīng)復(fù)數(shù),且,,可以與任意實(shí)數(shù)比較大小,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,以為始邊,角的終邊與單位圓的交點(diǎn)在第一象限,已知.
(1)若,求的值;
(2)若點(diǎn)橫坐標(biāo)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在底角為的等腰梯形中,已知,分別為,的中點(diǎn).設(shè),.
(1)試用,表示,;
(2)若,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
平面直角坐標(biāo)系xOy內(nèi)有向量=(1,7),=(5,1),=(2,1),點(diǎn)Q為直線(xiàn)OP上一動(dòng)點(diǎn).
(1)當(dāng)·取得最小值時(shí),求坐標(biāo);
(2)當(dāng)點(diǎn)Q滿(mǎn)足(1)中條件時(shí),求cos∠AQB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量,定義函數(shù)
(1)求函數(shù)的表達(dá)式,并指出其最大最小值;
(2)在銳角中,角A,B,C的對(duì)邊分別為a,b,c,且求 的面積S。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知向量=(sinB,1-cosB),且與向量=(2,0)所成角為,其中A、B、C是△ABC的內(nèi)角。
(1)求角B的大。
(2)求sinA+sinC的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com