20.已知數(shù)列{an}中,a1=-1,an+1=an+n,若利用如圖所示的程序框圖計(jì)算該數(shù)列的第2016項(xiàng),則判斷框內(nèi)的條件是( 。
A.n≤2014?B.n≤2015?C.n≤2016?D.n≤2017?

分析 n=1,滿足條件,執(zhí)行循環(huán)體,依此類推,當(dāng)n=2016,不滿足條件,退出循環(huán)體,從而得到循環(huán)滿足的條件.

解答 解:模擬程序的運(yùn)行,可得
n=1,a1=1,
滿足條件,第1次循環(huán),a2=a1+1,n=2;
滿足條件,第2次循環(huán),a3=a2+2,n=3;
…;
滿足條件,第2015次循環(huán),a2016=a2015+2015,n=2016,
此時(shí),由題意,應(yīng)該退出循環(huán),輸出該數(shù)列的第2016項(xiàng),
所以,n≤2015符合條件,
故選:B.

點(diǎn)評(píng) 本題考查程序框圖,通過(guò)對(duì)程序框圖的分析對(duì)判斷框進(jìn)行判斷,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)f(x)的定義域?yàn)閷?shí)數(shù)R,f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^x}-1,-1≤x<0\\{log_2}(x+1),0≤x<3.\end{array}$對(duì)任意的x∈R都有f(x+2)=f(x-2).若在區(qū)間[-5,3]上函數(shù)g(x)=f(x)-mx+m恰好有三個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.$(-\frac{1}{2},-\frac{1}{6})$B.$[-\frac{1}{2},-\frac{1}{6})$C.$(-\frac{1}{2},-\frac{1}{3})$D.$[-\frac{1}{2},-\frac{1}{3}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知等差數(shù)列{an}中,公差d>0,其前n項(xiàng)和為Sn,且滿足a2•a3=45,a1+a4=14.
(1)求數(shù)列an的通項(xiàng)公式;
(2)設(shè)由bn=$\frac{S_n}{n+c}$(c≠0)構(gòu)成的新數(shù)列為bn,求證:當(dāng)且僅當(dāng)c=-$\frac{1}{2}$時(shí),數(shù)列bn是等差數(shù)列;
(3)對(duì)于(2)中的等差數(shù)列bn,設(shè)cn=$\frac{8}{{({a_n}+7)•{b_n}}}$(n∈N*),數(shù)列{cn}的前n項(xiàng)和為Tn,現(xiàn)有數(shù)列{f(n)},f(n)=Tn•(an+3-$\frac{8}{_{n}}$)•0.9n(n∈N*),是否存在整數(shù)M,使f(n)<M對(duì)一切n∈N*都成立?若存在,求出M的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.一房產(chǎn)商競(jìng)標(biāo)得一塊扇形OPQ地皮,其圓心角∠POQ=$\frac{π}{3}$,半徑為R=200m,房產(chǎn)商欲在此地皮上修建一棟平面圖為矩形的商住樓,為使得地皮的使用率最大,準(zhǔn)備了兩種設(shè)計(jì)方案如圖,方案一:矩形ABCD的一邊AB在半徑OP上,C在圓弧上,D在半徑OQ;方案二:矩形EFGH的頂點(diǎn)在圓弧上,頂點(diǎn)G,H分別在兩條半徑上.請(qǐng)你通過(guò)計(jì)算,為房產(chǎn)商提供決策建議.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合M={x|$\frac{1}{x}$>1},N={x|x2+2x-3<0},則M∪N=( 。
A.(-∞,-3)B.(-∞,1)C.(-3,1)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知離心率為$\frac{{\sqrt{2}}}{2}$的橢圓E:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過(guò)點(diǎn)A(1,$\frac{{\sqrt{2}}}{2}$).
(1)求橢圓E的方程;
(2)若不過(guò)點(diǎn)A的直線l:y=$\frac{{\sqrt{2}}}{2}$x+m交橢圓E于B,C兩點(diǎn),求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)函數(shù)f(x)=(x-a)|x-a|+b,a,b∈R,則下列敘述中,正確的序號(hào)是( 。
①對(duì)任意實(shí)數(shù)a,b,函數(shù)y=f(x)在R上是單調(diào)函數(shù);
②對(duì)任意實(shí)數(shù)a,b,函數(shù)y=f(x)在R上都不是單調(diào)函數(shù);
③對(duì)任意實(shí)數(shù)a,b,函數(shù)y=f(x)的圖象都是中心對(duì)稱圖象;
④存在實(shí)數(shù)a,b,使得函數(shù)y=f(x)的圖象不是中心對(duì)稱圖象.
A.①③B.②③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)F1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn),點(diǎn)M(a,b),∠MF1F2=30°,則雙曲線的離心率為(  )
A.4B.$\sqrt{3}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若集合A={x|x>-1},則(  )
A.0⊆AB.{0}⊆AC.{0}∈AD.∅∈A

查看答案和解析>>

同步練習(xí)冊(cè)答案