分析 設(shè)直角邊長為a,b,則斜邊長為$\sqrt{{a}^{2}+^{2}}$,利用直角三角形ABC的三邊之和為2,可得a+b+$\sqrt{{a}^{2}+^{2}}$=2,利用基本不等式,即可求△ABC的面積的最大值.
解答 解:設(shè)直角邊長為a,b,則斜邊長為$\sqrt{{a}^{2}+^{2}}$,
∵直角三角形ABC的三邊之和為2,
∴a+b+$\sqrt{{a}^{2}+^{2}}$=2,
∴2≥2$\sqrt{ab}$+$\sqrt{2ab}$,
∴$\sqrt{ab}$≤$\frac{2}{2+\sqrt{2}}$=2-$\sqrt{2}$,
∴ab≤6-4$\sqrt{2}$,
∴S=$\frac{1}{2}$ba≤3-2$\sqrt{2}$,
∴△ABC的面積的最大值為3-2$\sqrt{2}$.
故答案為:3-2$\sqrt{2}$.
點評 本題考查基本不等式的運用,考查學(xué)生的計算能力,正確運用基本不等式是關(guān)鍵,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 冪函數(shù) | B. | 對數(shù)函數(shù) | C. | 指數(shù)函數(shù) | D. | 一次函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=3x+4 | B. | y=x2 | C. | y=|x-1| | D. | y=$\frac{1}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A、B是互斥事件 | B. | A、B是對立事件 | C. | A、B不是互斥事件 | D. | 以上都不對 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com