【題目】按下面的流程圖進(jìn)行計(jì)算.若輸出的,則輸入的正實(shí)數(shù)值的個(gè)數(shù)最多為( )

A. B. C. D.

【答案】A

【解析】程序框圖的用途是數(shù)列求和,當(dāng)x>100時(shí)結(jié)束循環(huán),輸出x的值為202:

當(dāng)202=3x+1,解得x=67;即輸入x=67時(shí),輸出結(jié)果202.

202=3(3x+1)+1,解得x=22;即輸入x=22時(shí),輸出結(jié)果202.

202=3(3(3x+1)+1)+1.即201=3(3(3x+1)+1),

∴67=3(3x+1)+1,即22=3x+1,解得x=7,輸入x=7時(shí),輸出結(jié)果202.

202=3(3(3(3x+1)+1)+1)+1.解得x=2,輸入x=2時(shí),輸出結(jié)果202.

202=3(3(3(3(3x+1)+1)+1)+1)+1.解得x=,輸入x=時(shí),輸出結(jié)果202.

共有5個(gè)不同的x。

故答案為A。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)圓的圓心為,直線過(guò)點(diǎn)且與軸不重合, 交圓兩點(diǎn),過(guò)的平行線交于點(diǎn).

(1)證明為定值,并寫出點(diǎn)的軌跡方程;

(2)設(shè),過(guò)點(diǎn)作直線,交點(diǎn)的軌跡于兩點(diǎn) (異于),直線的斜率分別為,證明: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在底面是菱形的四棱錐, 平面, 點(diǎn)分別為的中點(diǎn),設(shè)直線與平面交于點(diǎn).

1已知平面平面,求證: .

2求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為正方形,平面底面, ,點(diǎn)分別是的中點(diǎn).

)求證: 平面;

)求證: 平面;

)在棱上求作一點(diǎn),使得,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心的中心在中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上且過(guò)點(diǎn),離心率是

)求橢圓的標(biāo)準(zhǔn)方程.

)直線過(guò)點(diǎn)且與橢圓交于、兩點(diǎn),若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中.

1)設(shè),討論的單調(diào)性;

2)若函數(shù)內(nèi)存在零點(diǎn),求的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖幾何體ADM-BCN中, 是正方形, , , , .

(Ⅰ)求證: ;

(Ⅱ)求證:

(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是海面上位于東西方向相距海里的兩個(gè)觀測(cè)點(diǎn).現(xiàn)位于A點(diǎn)北偏東45°,B點(diǎn)北偏西60°的D點(diǎn)有一艘輪船發(fā)出求救信號(hào).位于B點(diǎn)南偏西60°且與B相距20海里的C點(diǎn)的救援船立即前往營(yíng)救,其航行速度為30海里/小時(shí)。求救援船直線到達(dá)D的時(shí)間和航行方向.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,且過(guò)點(diǎn)

(Ⅰ)求橢圓的方程.

(Ⅱ)若, 是橢圓上兩個(gè)不同的動(dòng)點(diǎn),且使的角平分線垂直于軸,試判斷直線的斜率是否為定值?若是,求出該值;若不是,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案